Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2005, Volume 44, Number 1, Pages 24–43 (Mi al69)  

This article is cited in 8 scientific papers (total in 8 papers)

Zeros in tables of characters for the groups $S_n$ and $A_n$

V. A. Belonogov

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
Full-text PDF (225 kB) Citations (8)
References:
Abstract: In the representation theory of symmetric groups, for each partition $\alpha$ of a natural number $n$, the partition $h(\alpha)$ of $n$ is defined so as to obtain a certain set of zeros in the table of characters for $S_n$. Namely, $h(\alpha)$ is the greatest (under the lexicographic ordering $\leq$) partition among $\beta\in P(n)$ such that $\chi^\alpha(g_\beta)\ne0$. Here, $\chi^\alpha$ – is an irreducible character of $S_n$, indexed by a partition $\alpha$, and $g_\beta$ is a conjugacy class of elements in $S_n$, indexed by a partition $\beta$. We point out an extra set of zeros in the table that we are dealing with. For every non self-associated partition $\alpha\in P(n)$ the partition $f(\alpha)$ of $n$ is defined so that $f(\alpha)$ is greatest among the partitions $\beta$ of $n$ which are opposite in sign to $h(\alpha)$ and are such that $\chi^\alpha(g_\beta)\ne0$ (Thm. 1). Also, for any self-associated partition $\alpha$ of $n>1$, we construct a partition $\tilde f(\alpha)\in P(n)$ such that $\tilde f(\alpha)$ is greatest among the partitions $\beta$ of $n$ which are distinct from $h(\alpha)$ and are such that $\chi^\alpha(g_\beta)\ne0$ (Thm. 2).
Keywords: symmetric group, table of characters, partition.
Received: 05.04.2004
English version:
Algebra and Logic, 2005, Volume 44, Issue 1, Pages 13–24
DOI: https://doi.org/10.1007/s10469-005-0002-3
Bibliographic databases:
UDC: 512.54
Language: Russian
Citation: V. A. Belonogov, “Zeros in tables of characters for the groups $S_n$ and $A_n$”, Algebra Logika, 44:1 (2005), 24–43; Algebra and Logic, 44:1 (2005), 13–24
Citation in format AMSBIB
\Bibitem{Bel05}
\by V.~A.~Belonogov
\paper Zeros in tables of characters for the groups $S_n$ and~$A_n$
\jour Algebra Logika
\yr 2005
\vol 44
\issue 1
\pages 24--43
\mathnet{http://mi.mathnet.ru/al69}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2165871}
\zmath{https://zbmath.org/?q=an:1096.20015}
\transl
\jour Algebra and Logic
\yr 2005
\vol 44
\issue 1
\pages 13--24
\crossref{https://doi.org/10.1007/s10469-005-0002-3}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-17444379009}
Linking options:
  • https://www.mathnet.ru/eng/al69
  • https://www.mathnet.ru/eng/al/v44/i1/p24
    Cycle of papers
    This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:508
    Full-text PDF :118
    References:77
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024