Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2005, Volume 44, Number 6, Pages 643–663 (Mi al135)  

This article is cited in 7 scientific papers (total in 7 papers)

Zeros in Tables of Characters for the Groups $S_n$ and $A_n$. II

V. A. Belonogov

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
Full-text PDF (227 kB) Citations (7)
References:
Abstract: Let $P(n)$ be the set of all partitions of a natural number $n$. In the representation theory of symmetric groups, for every partition $\alpha\in P(n)$, the partition $h(\alpha)\in P(n)$ is defined so as to produce a certain set of zeros in the character table for $S_n$. Previously, the analog $f(\alpha)$ of $h(\alpha)$ was obtained pointing out an extra set of zeros in the table mentioned. Namely, $h(\alpha)$ is greatest (under the lexicographic ordering $\le$) of the partitions $\beta$ of $n$ such that $\chi^\alpha(g_\beta)\ne0$, and $f(\alpha)$ is greatest of the partitions $\gamma$ of $n$ that are opposite in sign to $h(\alpha)$ and are such that $\chi^\alpha(g_\gamma)\ne0$, where $\chi^\alpha$ is an irreducible character of $S_n$, indexed by $\alpha$, and $g_\beta$ is an element in the conjugacy class of $S_n$, indexed by $\beta$. For $\alpha\in P(n)$, under some natural restrictions, here, we construct new partitions $h'(\alpha)$ and $f'(\alpha)$ of $n$ possessing the following properties.
(A) Let $\alpha\in P(n)$ and $n\geqslant 3$. Then $h'(\alpha)$ is identical is sign to $h(\alpha)$, $\chi^\alpha(g_{h'(\alpha)})\ne0$, but $\chi^\alpha(g_\gamma)=0$ for all $\gamma\in P(n)$ such that the sign of $\gamma$ coincides with one of $h(\alpha)$, and $h'(\alpha)<\gamma<h(\alpha)$.
(B) Let $\alpha\in P(n)$, $\alpha\ne\alpha'$, and $n\geqslant4$. Then $f'(\alpha)$ is identical in sign to $f(\alpha)$, $\chi^\alpha(g_{f'(\alpha)})\ne0$, but $\chi^\alpha(g_\gamma)=0$ for all $\gamma\in P(n)$ such that the sign of $\gamma$ coincides with one of $f(\alpha)$, and $f'(\alpha)<\gamma<f(\alpha)$. The results obtained are then applied to study pairs of semiproportional irreducible characters in $A_n$.
Keywords: symmetric group, alternating group, character table of a group.
Received: 07.02.2005
English version:
Algebra and Logic, 2005, Volume 44, Issue 6, Pages 357–369
DOI: https://doi.org/10.1007/s10469-005-0035-7
Bibliographic databases:
UDC: 512.54
Language: Russian
Citation: V. A. Belonogov, “Zeros in Tables of Characters for the Groups $S_n$ and $A_n$. II”, Algebra Logika, 44:6 (2005), 643–663; Algebra and Logic, 44:6 (2005), 357–369
Citation in format AMSBIB
\Bibitem{Bel05}
\by V.~A.~Belonogov
\paper Zeros in Tables of Characters for the Groups~$S_n$ and~$A_n$.~II
\jour Algebra Logika
\yr 2005
\vol 44
\issue 6
\pages 643--663
\mathnet{http://mi.mathnet.ru/al135}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2213300}
\zmath{https://zbmath.org/?q=an:1104.20012}
\transl
\jour Algebra and Logic
\yr 2005
\vol 44
\issue 6
\pages 357--369
\crossref{https://doi.org/10.1007/s10469-005-0035-7}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-28644438768}
Linking options:
  • https://www.mathnet.ru/eng/al135
  • https://www.mathnet.ru/eng/al/v44/i6/p643
    Cycle of papers
    This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:427
    Full-text PDF :114
    References:72
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024