Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2004, Volume 45, Number 5, Pages 977–994 (Mi smj1131)  

This article is cited in 19 scientific papers (total in 19 papers)

On the irreducible characters of the groups $S_n$ and $A_n$

V. A. Belonogov

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
References:
Abstract: Two characters $\varphi$ and $\psi$ of a finite group $G$ are called semiproportional if they are not proportional and there exists a set $M$ in $G$ such that the restrictions of $\varphi$ and $\psi$ to $M$ and $G\setminus M$ are proportional. We obtain a description for all pairs of proportional irreducible characters of symmetric groups. Namely, in Theorem 1 we prove equivalence of the following conditions for a pair $(\varphi,\psi)$ of different irreducible characters of $S_n(n\in\mathbb{N})$:
(1) $\varphi$ and $\psi$ are semiproportional;
(2) $\varphi$ and $\psi$ have the same roots;
(3) $\varphi$ and $\psi$ are associated (i.e., $\psi=\varphi\xi$ where $\xi$ is a linear character of $S_n$ with kernel $A_n$).
Note that (1) and (2) are in general not equivalent for arbitrary finite groups. For the symmetric groups, the equivalence of (1) and (3) validates the following conjecture proven earlier by the author for a number of group classes: semiproportional irreducible characters of a finite group have the same degree.
The alternating groups seem to have no semiproportional irreducible characters. Theorem 2 of this article is a step towards proving this conjecture.
Keywords: finite group, symmetric and alternating groups, table of characters, semiproportional characters, small $D$-block.
Received: 26.05.2003
English version:
Siberian Mathematical Journal, 2004, Volume 45, Issue 5, Pages 806–820
DOI: https://doi.org/10.1023/B:SIMJ.0000042471.30865.d2
Bibliographic databases:
UDC: 512.54
Language: Russian
Citation: V. A. Belonogov, “On the irreducible characters of the groups $S_n$ and $A_n$”, Sibirsk. Mat. Zh., 45:5 (2004), 977–994; Siberian Math. J., 45:5 (2004), 806–820
Citation in format AMSBIB
\Bibitem{Bel04}
\by V.~A.~Belonogov
\paper On the irreducible characters of the groups $S_n$ and $A_n$
\jour Sibirsk. Mat. Zh.
\yr 2004
\vol 45
\issue 5
\pages 977--994
\mathnet{http://mi.mathnet.ru/smj1131}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2108498}
\zmath{https://zbmath.org/?q=an:1079.20014}
\transl
\jour Siberian Math. J.
\yr 2004
\vol 45
\issue 5
\pages 806--820
\crossref{https://doi.org/10.1023/B:SIMJ.0000042471.30865.d2}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000224788300002}
Linking options:
  • https://www.mathnet.ru/eng/smj1131
  • https://www.mathnet.ru/eng/smj/v45/i5/p977
  • This publication is cited in the following 19 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:328
    Full-text PDF :108
    References:71
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024