|
|
Publications in Math-Net.Ru |
Citations |
|
2024 |
1. |
L. A. Gosteva, M. Yu. Nalimov, A. S. Yashugin, “Dynamical description of the phase transition to the superconducting state”, TMF, 221:2 (2024), 444–459 ; Theoret. and Math. Phys., 221:2 (2024), 1981–1993 |
|
2023 |
2. |
M. V. Komarova, M. Yu. Nalimov, “Convergent perturbation theory and the strong coupling limit in quantum electrodynamics”, TMF, 216:3 (2023), 532–547 ; Theoret. and Math. Phys., 216:3 (2023), 1360–1372 |
3. |
D. Davletbaeva, M. Hnatič, M. V. Komarova, T. Lučivjanský, L. Mižišin, M. Yu. Nalimov, “Composite operators of stochastic model A”, TMF, 216:3 (2023), 519–531 ; Theoret. and Math. Phys., 216:3 (2023), 1349–1359 |
|
2022 |
4. |
V. A. Krivorol, M. Yu. Nalimov, “Kinetic coefficients in a time-dependent Green's function formalism at finite temperature”, TMF, 213:3 (2022), 538–554 ; Theoret. and Math. Phys., 213:3 (2022), 1774–1788 |
|
2020 |
5. |
M. Yu. Nalimov, A. V. Ovsyannikov, “Convergent perturbation theory for studying phase transitions”, TMF, 204:2 (2020), 226–241 ; Theoret. and Math. Phys., 204:2 (2020), 1033–1045 |
3
|
|
2019 |
6. |
J. Honkonen, M. V. Komarova, Yu. G. Molotkov, M. Yu. Nalimov, “Kinetic theory of boson gas”, TMF, 200:3 (2019), 507–521 ; Theoret. and Math. Phys., 200:3 (2019), 1360–1373 |
5
|
7. |
Yu. A. Zhavoronkov, M. V. Komarova, Yu. G. Molotkov, M. Yu. Nalimov, J. Honkonen, “Critical dynamics of the phase transition to the superfluid state”, TMF, 200:2 (2019), 361–377 ; Theoret. and Math. Phys., 200:2 (2019), 1237–1251 |
9
|
|
2017 |
8. |
I. A. D'yakonov, M. V. Komarova, M. Yu. Nalimov, “Study of temperature Green's functions of graphene-like systems in a half-space”, TMF, 190:3 (2017), 426–439 ; Theoret. and Math. Phys., 190:3 (2017), 366–377 |
1
|
|
2014 |
9. |
G. A. Kalagov, M. Yu. Nalimov, M. V. Kompaniets, “Renormalization-group study of a superconducting phase transition: Asymptotic behavior of higher expansion orders and results of three-loop calculations”, TMF, 181:2 (2014), 374–386 ; Theoret. and Math. Phys., 181:2 (2014), 1448–1458 |
5
|
|
2013 |
10. |
M. V. Komarova, M. Yu. Nalimov, J. Honkonen, “Temperature Green's functions in Fermi systems: The superconducting phase transition”, TMF, 176:1 (2013), 89–97 ; Theoret. and Math. Phys., 176:1 (2013), 906–912 |
10
|
11. |
M. Dančo, M. Gnatich, M. V. Komarova, D. M. Krasnov, T. Lučivjanský, L. Mižišin, M. Yu. Nalimov, “Influence of hydrodynamic fluctuations on the phase transition in the $E$ and $F$ models of critical dynamics”, TMF, 176:1 (2013), 69–78 ; Theoret. and Math. Phys., 176:1 (2013), 888–897 |
3
|
12. |
M. Gnatich, M. V. Komarova, M. Yu. Nalimov, “Microscopic justification of the stochastic F-model of critical dynamics”, TMF, 175:3 (2013), 398–407 ; Theoret. and Math. Phys., 175:3 (2013), 779–787 |
9
|
|
2011 |
13. |
M. V. Komarova, D. M. Krasnov, M. Yu. Nalimov, “Bose condensation: The viscosity critical dimension and developed turbulence”, TMF, 169:1 (2011), 89–99 ; Theoret. and Math. Phys., 169:1 (2011), 1441–1449 |
6
|
14. |
M. Yu. Nalimov, V. A. Sergeev, “Study of the higher-order asymptotic behavior of quantum field expansions in the theory of two-dimensional fully developed turbulence”, TMF, 169:1 (2011), 79–88 ; Theoret. and Math. Phys., 169:1 (2011), 1432–1440 |
|
2009 |
15. |
M. Yu. Nalimov, V. A. Sergeev, L. Sladkoff, “Borel resummation of the $\varepsilon$-expansion of the dynamical exponent $z$ in model A of the $\phi^4(O(n))$ theory”, TMF, 159:1 (2009), 96–108 ; Theoret. and Math. Phys., 159:1 (2009), 499–508 |
18
|
16. |
M. V. Komarova, I. S. Kremnev, M. Yu. Nalimov, “Family of instantons of the Kraichnan model with a frozen velocity field”, TMF, 158:2 (2009), 200–213 ; Theoret. and Math. Phys., 158:2 (2009), 167–178 |
1
|
|
2005 |
17. |
M. V. Komarova, M. Yu. Nalimov, “Large-order asymptotic terms in perturbation theory: The first $(4-\epsilon)$-expansion correction to renormalization constants in the $O(n)$-symmetric theory”, TMF, 143:2 (2005), 211–230 ; Theoret. and Math. Phys., 143:2 (2005), 664–680 |
3
|
|
2001 |
18. |
M. V. Komarova, M. Yu. Nalimov, “Asymptotic Behavior of Higher-Order Perturbations: Scaling Functions of the $O(n)$-Symmetric $\phi^4$-Theory in the $(4-\epsilon)$-Expansion”, TMF, 129:3 (2001), 387–402 ; Theoret. and Math. Phys., 129:3 (2001), 1631–1644 |
4
|
19. |
M. V. Komarova, M. Yu. Nalimov, “Asymptotic Behavior of Renormalization Constants in Higher Orders of the Perturbation Expansion for the $(4?\epsilon)$-Dimensionally Regularized $O(n)$-Symmetric $\phi^4$ Theory”, TMF, 126:3 (2001), 409–426 ; Theoret. and Math. Phys., 126:3 (2001), 339–353 |
21
|
|
1997 |
20. |
N. V. Antonov, M. Yu. Nalimov, A. A. Udalov, “Renormalization group in the problem of the fully developed turbulence of a compresible fluid”, TMF, 110:3 (1997), 385–398 ; Theoret. and Math. Phys., 110:3 (1997), 305–315 |
21
|
|
1996 |
21. |
L. Ts. Adzhemyan, D. Yu. Volchenckov, M. Yu. Nalimov, “The renormalization group investigation of correlation functions and composite operators of the model of stohastic magnetic hydrodynamics”, TMF, 107:1 (1996), 142–154 ; Theoret. and Math. Phys., 107:1 (1996), 533–543 |
6
|
22. |
L. Ts. Adzhemyan, S. V. Borisenok, M. Yu. Nalimov, “Calculation of the spectra for developed decaying turbulence in the energy-containing and inertial regions”, TMF, 106:3 (1996), 416–424 ; Theoret. and Math. Phys., 106:3 (1996), 341–348 |
1
|
23. |
D. Yu. Volchenckov, M. Yu. Nalimov, “The corrections to fully developed turbulent spectra due to the compressibility of fluid”, TMF, 106:3 (1996), 375–389 ; Theoret. and Math. Phys., 106:3 (1996), 307–318 |
16
|
|
1995 |
24. |
L. Ts. Adzhemyan, M. Yu. Nalimov, M. M. Stepanova, “Renormalization-group approach to the problem of the effect of compressibility on the spectral properties of developed turbulence”, TMF, 104:2 (1995), 260–270 ; Theoret. and Math. Phys., 104:2 (1995), 971–979 |
12
|
25. |
M. Yu. Nalimov, “The perturbation expansion and goldstone singularities in the ordered phase of the $O_n$-symmetrical $\mathbf \Phi^4$-theory in half space”, TMF, 102:2 (1995), 223–236 ; Theoret. and Math. Phys., 102:2 (1995), 163–172 |
4
|
|
1993 |
26. |
L. Ts. Adzhemyan, M. Yu. Nalimov, “The principle of maximum randomness in the theory of fully developed turbulence. II. Isotropic decaying turbulence”, TMF, 96:1 (1993), 150–159 ; Theoret. and Math. Phys., 96:1 (1993), 872–878 |
3
|
|
1992 |
27. |
L. Ts. Adzhemyan, M. Yu. Nalimov, “The principle of maximum randomness in the theory of fully developed turbulence. I. Homogeneous isotropic turbulence”, TMF, 91:2 (1992), 294–308 ; Theoret. and Math. Phys., 91:2 (1992), 532–542 |
7
|
28. |
V. F. Borin, A. N. Vasil'ev, M. Yu. Nalimov, “Modified critical behavior in the $\varphi^4(O_n)$ model”, TMF, 91:1 (1992), 168–172 ; Theoret. and Math. Phys., 91:1 (1992), 446–448 |
|
1989 |
29. |
M. Yu. Nalimov, “Goldstone singularities in the $4-\varepsilon$ expansion of the $\Phi^4$ theory”, TMF, 80:2 (1989), 212–225 ; Theoret. and Math. Phys., 80:2 (1989), 819–828 |
4
|
|
1986 |
30. |
M. Yu. Nalimov, “Regular expansion for calculation of the renormalization-group functions in a theory with dimensional coupling constants”, TMF, 68:2 (1986), 210–224 ; Theoret. and Math. Phys., 68:2 (1986), 778–788 |
1
|
|
1984 |
31. |
A. N. Vasil'ev, M. Yu. Nalimov, Yu. R. Khonkonen, “$1/N$ expansion: Calculation of anomalous dimensions and mixing matrices in the order $1/N$ for $N\times p$ matrix gauge-invariant $\sigma$-model”, TMF, 58:2 (1984), 169–183 ; Theoret. and Math. Phys., 58:2 (1984), 111–120 |
16
|
|
1983 |
32. |
A. N. Vasil'ev, M. Yu. Nalimov, “The $CP^{N-1}$ model: Calculation of anomalous dimensions and the mixing matrices in the order $1/N$”, TMF, 56:1 (1983), 15–30 ; Theoret. and Math. Phys., 56:1 (1983), 643–653 |
42
|
33. |
A. N. Vasil'ev, M. Yu. Nalimov, “Analog of dimensional regularization for calculation of the renormalization-group functions in the $1/n$ expansion for arbitrary dimension of space”, TMF, 55:2 (1983), 163–175 ; Theoret. and Math. Phys., 55:2 (1983), 423–431 |
47
|
|
Organisations |
|
|
|
|