Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2019, Volume 200, Number 2, Pages 361–377
DOI: https://doi.org/10.4213/tmf9674
(Mi tmf9674)
 

This article is cited in 9 scientific papers (total in 9 papers)

Critical dynamics of the phase transition to the superfluid state

Yu. A. Zhavoronkova, M. V. Komarovaa, Yu. G. Molotkova, M. Yu. Nalimova, J. Honkonenb

a St. Petersburg State University, St. Petersburg, Russia
b National Defence University, Helsinki, Finland
Full-text PDF (483 kB) Citations (9)
References:
Abstract: In papers devoted to superfluidity, the generally accepted statement that the dynamics of the corresponding phase transition is described by the stochastic model F or E can be frequently found. Nevertheless, the dynamical critical index has not been found even in the leading order of the perturbation theory. It is also unknown which model, E or F, in fact corresponds to this system. We use two different approaches to study this problem. First, we study the dynamics of the critical behavior in a neighborhood of the $\lambda$ point using the renormalization group method based on a quantum microscopic model in the formalism of the time-dependent Green's functions at a finite temperature. Second, we study the stochastic model F to find whether it is stable under compressibility effects. Both approaches lead to the same very unexpected result: the dynamics of the phase transition to the superfluid state are described by the stochastic model A with a known dynamical critical index.
Keywords: superfluidity, $\lambda$ point, stochastic dynamics, quantum field theory, quantum-field renormalization group, $(4-\epsilon)$-expansion.
Funding agency Grant number
Academy of Finland 325408
This research was supported by the Academy of Finland (Grant No. 325408).
Received: 13.12.2018
Revised: 27.01.2019
English version:
Theoretical and Mathematical Physics, 2019, Volume 200, Issue 2, Pages 1237–1251
DOI: https://doi.org/10.1134/S0040577919080142
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: Yu. A. Zhavoronkov, M. V. Komarova, Yu. G. Molotkov, M. Yu. Nalimov, J. Honkonen, “Critical dynamics of the phase transition to the superfluid state”, TMF, 200:2 (2019), 361–377; Theoret. and Math. Phys., 200:2 (2019), 1237–1251
Citation in format AMSBIB
\Bibitem{ZhaKomMol19}
\by Yu.~A.~Zhavoronkov, M.~V.~Komarova, Yu.~G.~Molotkov, M.~Yu.~Nalimov, J.~Honkonen
\paper Critical dynamics of the~phase transition to the~superfluid state
\jour TMF
\yr 2019
\vol 200
\issue 2
\pages 361--377
\mathnet{http://mi.mathnet.ru/tmf9674}
\crossref{https://doi.org/10.4213/tmf9674}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3985744}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2019TMP...200.1237Z}
\elib{https://elibrary.ru/item.asp?id=38710267}
\transl
\jour Theoret. and Math. Phys.
\yr 2019
\vol 200
\issue 2
\pages 1237--1251
\crossref{https://doi.org/10.1134/S0040577919080142}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000483801700014}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85071910386}
Linking options:
  • https://www.mathnet.ru/eng/tmf9674
  • https://doi.org/10.4213/tmf9674
  • https://www.mathnet.ru/eng/tmf/v200/i2/p361
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:339
    Full-text PDF :84
    References:34
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024