Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2001, Volume 126, Number 3, Pages 409–426
DOI: https://doi.org/10.4213/tmf438
(Mi tmf438)
 

This article is cited in 21 scientific papers (total in 21 papers)

Asymptotic Behavior of Renormalization Constants in Higher Orders of the Perturbation Expansion for the (4?ϵ)(4?ϵ)-Dimensionally Regularized O(n)O(n)-Symmetric ϕ4ϕ4 Theory

M. V. Komarova, M. Yu. Nalimov

Saint-Petersburg State University
References:
Abstract: Higher-order asymptotic expansions for renormalization constants and critical exponents of the O(n)O(n)-symmetric ϕ4ϕ4 theory are found based on the instanton approach in the minimal subtraction scheme for the (4ϵ)(4ϵ)-dimensional regularization. The exactly known expansion terms differ substantially from their asymptotic values. We find expressions that improve the asymptotic expansions for unknown expansion terms of the renormalization constants.
Received: 21.09.2000
English version:
Theoretical and Mathematical Physics, 2001, Volume 126, Issue 3, Pages 339–353
DOI: https://doi.org/10.1023/A:1010367917876
Bibliographic databases:
Language: Russian
Citation: M. V. Komarova, M. Yu. Nalimov, “Asymptotic Behavior of Renormalization Constants in Higher Orders of the Perturbation Expansion for the (4?ϵ)(4?ϵ)-Dimensionally Regularized O(n)O(n)-Symmetric ϕ4ϕ4 Theory”, TMF, 126:3 (2001), 409–426; Theoret. and Math. Phys., 126:3 (2001), 339–353
Citation in format AMSBIB
\Bibitem{KomNal01}
\by M.~V.~Komarova, M.~Yu.~Nalimov
\paper Asymptotic Behavior of Renormalization Constants in Higher Orders of the Perturbation Expansion for the $(4?\epsilon)$-Dimensionally Regularized $O(n)$-Symmetric $\phi^4$ Theory
\jour TMF
\yr 2001
\vol 126
\issue 3
\pages 409--426
\mathnet{http://mi.mathnet.ru/tmf438}
\crossref{https://doi.org/10.4213/tmf438}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1863913}
\zmath{https://zbmath.org/?q=an:0993.81034}
\transl
\jour Theoret. and Math. Phys.
\yr 2001
\vol 126
\issue 3
\pages 339--353
\crossref{https://doi.org/10.1023/A:1010367917876}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000170328400004}
Linking options:
  • https://www.mathnet.ru/eng/tmf438
  • https://doi.org/10.4213/tmf438
  • https://www.mathnet.ru/eng/tmf/v126/i3/p409
  • This publication is cited in the following 21 articles:
    1. Ella Ivanova, Georgii Kalagov, Marina Komarova, Mikhail Nalimov, “Quantum-Field Multiloop Calculations in Critical Dynamics”, Symmetry, 15:5 (2023), 1026  crossref
    2. Paul-Hermann Balduf, “Statistics of Feynman amplitudes in ϕ4-theory”, J. High Energ. Phys., 2023:11 (2023)  crossref
    3. Johan Henriksson, “The critical O(N) CFT: Methods and conformal data”, Physics Reports, 1002 (2023), 1  crossref
    4. M. Yu. Nalimov, A. V. Ovsyannikov, “Convergent perturbation theory for studying phase transitions”, Theoret. and Math. Phys., 204:2 (2020), 1033–1045  mathnet  crossref  crossref  adsnasa  isi  elib
    5. McKane A.J., “Perturbation Expansions At Large Order: Results For Scalar Field Theories Revisited”, J. Phys. A-Math. Theor., 52:5 (2019), 055401  crossref  isi  scopus
    6. Gracey J.A., “Large N-F Quantum Field Theory”, Int. J. Mod. Phys. A, 33:35 (2018), 1830032  crossref  mathscinet  zmath  isi  scopus
    7. N. V. Antonov, M. V. Kompaniets, N. M. Lebedev, “Critical behavior of the $O(n)$ $\phi^4$ model with an antisymmetric tensor order parameter: Three-loop approximation”, Theoret. and Math. Phys., 190:2 (2017), 204–216  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    8. Kompaniets M.V. Panzer E., “Minimally Subtracted Six-Loop Renormalization of O(N)-Symmetric Phi(4) Theory and Critical Exponents”, Phys. Rev. D, 96:3 (2017), 036016  crossref  mathscinet  isi  scopus
    9. Kalagov G.A. Kompaniets M.V. Nalimov M.Yu., “Renormalization-group investigation of a superconducting U( r )-phase transition using five loops calculations”, Nucl. Phys. B, 905 (2016), 16–44  crossref  mathscinet  zmath  isi  elib  scopus
    10. G. A. Kalagov, M. Yu. Nalimov, M. V. Kompaniets, “Renormalization-group study of a superconducting phase transition: Asymptotic behavior of higher expansion orders and results of three-loop calculations”, Theoret. and Math. Phys., 181:2 (2014), 1448–1458  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib  elib
    11. Kalagov G.A. Nalimov M.Yu., “Higher-Order Asymptotics and Critical Indexes in the Phi(3) Theory”, Nucl. Phys. B, 884 (2014), 672–683  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    12. Honkonen J., Komarova M.V., Nalimov M.Yu., “Bose–Einstein Condensation Beyond Perturbation Theory: Goldstone Singularities and Instanton Solution”, Eur. Phys. J. B, 87:3 (2014), 75  crossref  mathscinet  adsnasa  isi  scopus  scopus
    13. Komarova M.V., Kremnev I.S., Nalimov M.Yu., “Convergence of perturbation series for renormalization constants in Kraichnan model with “frozen” velocity field”, Eur Phys J C Part Fields, 71:5 (2011), 1646  crossref  mathscinet  adsnasa  isi  scopus  scopus
    14. M. Yu. Nalimov, V. A. Sergeev, L. Sladkoff, “Borel resummation of the $\varepsilon$-expansion of the dynamical exponent $z$ in model A of the $\phi^4(O(n))$ theory”, Theoret. and Math. Phys., 159:1 (2009), 499–508  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    15. Andreanov, AY, “Large-order asymptotes of the quantum-field expansions for the Kraichnan model of passive scalar advection”, Journal of Physics A-Mathematical and General, 39:25 (2006), 7801  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    16. M. V. Komarova, M. Yu. Nalimov, “Large-order asymptotic terms in perturbation theory: The first $(4-\epsilon)$-expansion correction to renormalization constants in the $O(n)$-symmetric theory”, Theoret. and Math. Phys., 143:2 (2005), 664–680  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    17. Honkonen, J, “Instantons for dynamic models from B to H”, Nuclear Physics B, 714:3 (2005), 292  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    18. Honkonen, J, “Large-order asymptotes for dynamic models near equilibrium”, Nuclear Physics B, 707:3 (2005), 493  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    19. Yukalov, VI, “Summation of power series by self-similar factor approximants”, Physica A-Statistical Mechanics and Its Applications, 328:3–4 (2003), 409  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    20. Honkonen, J, “Large order asymptotics and convergent perturbation theory for critical indices of the phi(4) model in 4 epsilon expansion”, Acta Physica Slovaca, 52:4 (2002), 303  mathscinet  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:689
    Full-text PDF :269
    References:96
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025