This article is cited in 21 scientific papers (total in 21 papers)
Asymptotic Behavior of Renormalization Constants in Higher Orders of the Perturbation Expansion for the (4?ϵ)(4?ϵ)-Dimensionally Regularized O(n)O(n)-Symmetric ϕ4ϕ4 Theory
Abstract:
Higher-order asymptotic expansions for renormalization constants and critical exponents of the O(n)O(n)-symmetric ϕ4ϕ4 theory are found based on the instanton approach in the minimal subtraction scheme for the (4−ϵ)(4−ϵ)-dimensional regularization. The exactly known expansion terms differ substantially from their asymptotic values. We find expressions that improve the asymptotic expansions for unknown expansion terms of the renormalization constants.
Citation:
M. V. Komarova, M. Yu. Nalimov, “Asymptotic Behavior of Renormalization Constants in Higher Orders of the Perturbation Expansion for the (4?ϵ)(4?ϵ)-Dimensionally Regularized O(n)O(n)-Symmetric ϕ4ϕ4 Theory”, TMF, 126:3 (2001), 409–426; Theoret. and Math. Phys., 126:3 (2001), 339–353
\Bibitem{KomNal01}
\by M.~V.~Komarova, M.~Yu.~Nalimov
\paper Asymptotic Behavior of Renormalization Constants in Higher Orders of the Perturbation Expansion for the $(4?\epsilon)$-Dimensionally Regularized $O(n)$-Symmetric $\phi^4$ Theory
\jour TMF
\yr 2001
\vol 126
\issue 3
\pages 409--426
\mathnet{http://mi.mathnet.ru/tmf438}
\crossref{https://doi.org/10.4213/tmf438}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1863913}
\zmath{https://zbmath.org/?q=an:0993.81034}
\transl
\jour Theoret. and Math. Phys.
\yr 2001
\vol 126
\issue 3
\pages 339--353
\crossref{https://doi.org/10.1023/A:1010367917876}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000170328400004}
Linking options:
https://www.mathnet.ru/eng/tmf438
https://doi.org/10.4213/tmf438
https://www.mathnet.ru/eng/tmf/v126/i3/p409
This publication is cited in the following 21 articles:
Ella Ivanova, Georgii Kalagov, Marina Komarova, Mikhail Nalimov, “Quantum-Field Multiloop Calculations in Critical Dynamics”, Symmetry, 15:5 (2023), 1026
Paul-Hermann Balduf, “Statistics of Feynman amplitudes in ϕ4-theory”, J. High Energ. Phys., 2023:11 (2023)
Johan Henriksson, “The critical O(N) CFT: Methods and conformal data”, Physics Reports, 1002 (2023), 1
M. Yu. Nalimov, A. V. Ovsyannikov, “Convergent perturbation theory for studying phase transitions”, Theoret. and Math. Phys., 204:2 (2020), 1033–1045
McKane A.J., “Perturbation Expansions At Large Order: Results For Scalar Field Theories Revisited”, J. Phys. A-Math. Theor., 52:5 (2019), 055401
Gracey J.A., “Large N-F Quantum Field Theory”, Int. J. Mod. Phys. A, 33:35 (2018), 1830032
N. V. Antonov, M. V. Kompaniets, N. M. Lebedev, “Critical behavior of the $O(n)$$\phi^4$ model with an antisymmetric tensor order parameter: Three-loop approximation”, Theoret. and Math. Phys., 190:2 (2017), 204–216
Kompaniets M.V. Panzer E., “Minimally Subtracted Six-Loop Renormalization of O(N)-Symmetric Phi(4) Theory and Critical Exponents”, Phys. Rev. D, 96:3 (2017), 036016
Kalagov G.A. Kompaniets M.V. Nalimov M.Yu., “Renormalization-group investigation of a superconducting U( r )-phase transition using five loops calculations”, Nucl. Phys. B, 905 (2016), 16–44
G. A. Kalagov, M. Yu. Nalimov, M. V. Kompaniets, “Renormalization-group study of a superconducting phase transition: Asymptotic behavior of higher expansion orders and results of three-loop calculations”, Theoret. and Math. Phys., 181:2 (2014), 1448–1458
Kalagov G.A. Nalimov M.Yu., “Higher-Order Asymptotics and Critical Indexes in the Phi(3) Theory”, Nucl. Phys. B, 884 (2014), 672–683
Komarova M.V., Kremnev I.S., Nalimov M.Yu., “Convergence of perturbation series for renormalization constants in Kraichnan model with “frozen” velocity field”, Eur Phys J C Part Fields, 71:5 (2011), 1646
M. Yu. Nalimov, V. A. Sergeev, L. Sladkoff, “Borel resummation of the $\varepsilon$-expansion of the dynamical exponent $z$ in model A of the $\phi^4(O(n))$ theory”, Theoret. and Math. Phys., 159:1 (2009), 499–508
Andreanov, AY, “Large-order asymptotes of the quantum-field expansions for the Kraichnan model of passive scalar advection”, Journal of Physics A-Mathematical and General, 39:25 (2006), 7801
M. V. Komarova, M. Yu. Nalimov, “Large-order asymptotic terms in perturbation theory: The first $(4-\epsilon)$-expansion correction to renormalization constants in the $O(n)$-symmetric theory”, Theoret. and Math. Phys., 143:2 (2005), 664–680
Honkonen, J, “Instantons for dynamic models from B to H”, Nuclear Physics B, 714:3 (2005), 292
Honkonen, J, “Large-order asymptotes for dynamic models near equilibrium”, Nuclear Physics B, 707:3 (2005), 493
Yukalov, VI, “Summation of power series by self-similar factor approximants”, Physica A-Statistical Mechanics and Its Applications, 328:3–4 (2003), 409
Honkonen, J, “Large order asymptotics and convergent perturbation theory for critical indices of the phi(4) model in 4 epsilon expansion”, Acta Physica Slovaca, 52:4 (2002), 303