Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2009, Volume 159, Number 1, Pages 96–108
DOI: https://doi.org/10.4213/tmf6335
(Mi tmf6335)
 

This article is cited in 18 scientific papers (total in 18 papers)

Borel resummation of the ε-expansion of the dynamical exponent z in model A of the ϕ4(O(n)) theory

M. Yu. Nalimov, V. A. Sergeev, L. Sladkoff

Saint-Petersburg State University
References:
Abstract: We perform the Borel resummation of the currently known terms of the ε-expansion up to order ε4 of the dynamical exponent z in the critical-behavior model A. We obtain the large-order asymptotic approximation of the ε-expansion of the dynamical exponent and find a significant discrepancy between the currently calculated orders of the expansion and the obtained asymptotic values. We discuss the influence of this deviation on the accuracy of the resummation results.
Keywords: Borel resummation, dynamical exponent, critical behavior, large-order asymptotic approximation.
Received: 11.08.2008
English version:
Theoretical and Mathematical Physics, 2009, Volume 159, Issue 1, Pages 499–508
DOI: https://doi.org/10.1007/s11232-009-0040-4
Bibliographic databases:
Language: Russian
Citation: M. Yu. Nalimov, V. A. Sergeev, L. Sladkoff, “Borel resummation of the ε-expansion of the dynamical exponent z in model A of the ϕ4(O(n)) theory”, TMF, 159:1 (2009), 96–108; Theoret. and Math. Phys., 159:1 (2009), 499–508
Citation in format AMSBIB
\Bibitem{NalSerSla09}
\by M.~Yu.~Nalimov, V.~A.~Sergeev, L.~Sladkoff
\paper Borel resummation of the~$\varepsilon$-expansion of the~dynamical exponent $z$ in model~A of the~$\phi^4(O(n))$ theory
\jour TMF
\yr 2009
\vol 159
\issue 1
\pages 96--108
\mathnet{http://mi.mathnet.ru/tmf6335}
\crossref{https://doi.org/10.4213/tmf6335}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2547439}
\zmath{https://zbmath.org/?q=an:1175.81148}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2009TMP...159..499N}
\transl
\jour Theoret. and Math. Phys.
\yr 2009
\vol 159
\issue 1
\pages 499--508
\crossref{https://doi.org/10.1007/s11232-009-0040-4}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000269080400006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-70349543796}
Linking options:
  • https://www.mathnet.ru/eng/tmf6335
  • https://doi.org/10.4213/tmf6335
  • https://www.mathnet.ru/eng/tmf/v159/i1/p96
  • This publication is cited in the following 18 articles:
    1. David Cirauqui, Miguel Ángel García-March, Guillem Guigó Corominas, Tobias Graß, Przemysław R. Grzybowski, Gorka Muñoz-Gil, J. R. M. Saavedra, Maciej Lewenstein, “Comparing pseudo- and quantum-random number generators with Monte Carlo simulations”, APL Quantum, 1:3 (2024)  crossref
    2. L. A. Gosteva, M. Yu. Nalimov, A. S. Yashugin, “Dynamical description of the phase transition to the superconducting state”, Theoret. and Math. Phys., 221:2 (2024), 1981–1993  mathnet  crossref  crossref  adsnasa
    3. Ella Ivanova, Georgii Kalagov, Marina Komarova, Mikhail Nalimov, “Quantum-Field Multiloop Calculations in Critical Dynamics”, Symmetry, 15:5 (2023), 1026  crossref
    4. Adzhemyan L.Ts. Evdokimov D.A. Hnatic M. Ivanova V E. Kompaniets V M. Kudlis A. Zakharov V D., “The Dynamic Critical Exponent Z For 2D and 3D Ising Models From Five-Loop E Expansion”, Phys. Lett. A, 425 (2022), 127870  crossref  isi
    5. J. Honkonen, M. Komarova, Yu. Molotkov, M. Nalimov, A. Trenogin, “Critical dynamics of the superfluid phase transition: Multiloop calculation of the microscopic model”, Phys. Rev. E, 106:1 (2022)  crossref
    6. L.Ts. Adzhemyan, D.A. Evdokimov, M. Hnatič, E.V. Ivanova, M.V. Kompaniets, A. Kudlis, D.V. Zakharov, “Model A of critical dynamics: 5-loop ɛ expansion study”, Physica A: Statistical Mechanics and its Applications, 600 (2022), 127530  crossref
    7. V V Prudnikov, P V Prudnikov, E A Pospelov, A S Lyakh, “Simulation of non-equilibrium critical behavior of the 3D isotropic and anisotropic Heisenberg models”, J. Phys.: Conf. Ser., 1740:1 (2021), 012004  crossref
    8. Honkonen J., Komarova V M., Molotkov Yu.G., Nalimov M.Yu., Zhavoronkov Yu.A., Mathematical Modeling and Computational Physics 2019 (Mmcp 2019), Epj Web of Conferences, 226, eds. Adam G., Busa J., Hnatic M., E D P Sciences, 2020  crossref  isi
    9. Yu. A. Zhavoronkov, M. V. Komarova, Yu. G. Molotkov, M. Yu. Nalimov, J. Honkonen, “Critical dynamics of the phase transition to the superfluid state”, Theoret. and Math. Phys., 200:2 (2019), 1237–1251  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    10. Adzhemyan L.Ts. Ivanova E.V. Kompaniets M.V. Vorobyeva S.Y., “Diagram Reduction in Problem of Critical Dynamics of Ferromagnets: 4-Loop Approximation”, J. Phys. A-Math. Theor., 51:15 (2018), 155003  crossref  mathscinet  zmath  isi  scopus  scopus
    11. Mera H. Pedersen T.G. Nikolic B.K., “Fast Summation of Divergent Series and Resurgent Transseries From Meijer-G Approximants”, Phys. Rev. D, 97:10 (2018), 105027  crossref  mathscinet  isi  scopus  scopus
    12. Zhong W., Barkema G.T., Panja D., Ball R.C., “Critical Dynamical Exponent of the Two-Dimensional Scalar Phi(4) Model With Local Moves”, Phys. Rev. E, 98:6 (2018), 062128  crossref  mathscinet  isi  scopus
    13. Lin Y., Wang F., “Linear Relaxation in Large Two-Dimensional Ising Models”, Phys. Rev. E, 93:2 (2016), 022113  crossref  adsnasa  isi  scopus  scopus
    14. Kalagov G.A. Kompaniets M.V. Nalimov M.Yu., “Renormalization-group investigation of a superconducting U( r )-phase transition using five loops calculations”, Nucl. Phys. B, 905 (2016), 16–44  crossref  mathscinet  zmath  isi  elib  scopus
    15. M.V. Kompaniets, “Prediction of the higher-order terms based on Borel resummation with conformal mapping”, J. Phys.: Conf. Ser., 762 (2016), 012075  crossref
    16. G. A. Kalagov, M. Yu. Nalimov, M. V. Kompaniets, “Renormalization-group study of a superconducting phase transition: Asymptotic behavior of higher expansion orders and results of three-loop calculations”, Theoret. and Math. Phys., 181:2 (2014), 1448–1458  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib  elib
    17. Kalagov G.A. Nalimov M.Yu., “Higher-Order Asymptotics and Critical Indexes in the Phi(3) Theory”, Nucl. Phys. B, 884 (2014), 672–683  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    18. Samuel Friot, David Greynat, “Non-Perturbative Asymptotic Improvement of Perturbation Theory and Mellin–Barnes Representation”, SIGMA, 6 (2010), 079, 23 pp.  mathnet  crossref  mathscinet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:627
    Full-text PDF :305
    References:63
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025