Abstract:
We perform the Borel resummation of the currently known terms of the ε-expansion up to order ε4 of the dynamical exponent z in the critical-behavior model A. We obtain the large-order asymptotic approximation of the ε-expansion of the dynamical exponent and find a significant discrepancy between the currently calculated orders of the expansion and the obtained asymptotic values. We discuss the influence of this deviation on the accuracy of the resummation results.
Citation:
M. Yu. Nalimov, V. A. Sergeev, L. Sladkoff, “Borel resummation of the ε-expansion of the dynamical exponent z in model A of the ϕ4(O(n)) theory”, TMF, 159:1 (2009), 96–108; Theoret. and Math. Phys., 159:1 (2009), 499–508
\Bibitem{NalSerSla09}
\by M.~Yu.~Nalimov, V.~A.~Sergeev, L.~Sladkoff
\paper Borel resummation of the~$\varepsilon$-expansion of the~dynamical exponent $z$ in model~A of the~$\phi^4(O(n))$ theory
\jour TMF
\yr 2009
\vol 159
\issue 1
\pages 96--108
\mathnet{http://mi.mathnet.ru/tmf6335}
\crossref{https://doi.org/10.4213/tmf6335}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2547439}
\zmath{https://zbmath.org/?q=an:1175.81148}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2009TMP...159..499N}
\transl
\jour Theoret. and Math. Phys.
\yr 2009
\vol 159
\issue 1
\pages 499--508
\crossref{https://doi.org/10.1007/s11232-009-0040-4}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000269080400006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-70349543796}
Linking options:
https://www.mathnet.ru/eng/tmf6335
https://doi.org/10.4213/tmf6335
https://www.mathnet.ru/eng/tmf/v159/i1/p96
This publication is cited in the following 18 articles:
David Cirauqui, Miguel Ángel García-March, Guillem Guigó Corominas, Tobias Graß, Przemysław R. Grzybowski, Gorka Muñoz-Gil, J. R. M. Saavedra, Maciej Lewenstein, “Comparing pseudo- and quantum-random number generators with Monte Carlo simulations”, APL Quantum, 1:3 (2024)
L. A. Gosteva, M. Yu. Nalimov, A. S. Yashugin, “Dynamical description of the phase transition to the superconducting state”, Theoret. and Math. Phys., 221:2 (2024), 1981–1993
Ella Ivanova, Georgii Kalagov, Marina Komarova, Mikhail Nalimov, “Quantum-Field Multiloop Calculations in Critical Dynamics”, Symmetry, 15:5 (2023), 1026
Adzhemyan L.Ts. Evdokimov D.A. Hnatic M. Ivanova V E. Kompaniets V M. Kudlis A. Zakharov V D., “The Dynamic Critical Exponent Z For 2D and 3D Ising Models From Five-Loop E Expansion”, Phys. Lett. A, 425 (2022), 127870
J. Honkonen, M. Komarova, Yu. Molotkov, M. Nalimov, A. Trenogin, “Critical dynamics of the superfluid phase transition: Multiloop calculation of the microscopic model”, Phys. Rev. E, 106:1 (2022)
L.Ts. Adzhemyan, D.A. Evdokimov, M. Hnatič, E.V. Ivanova, M.V. Kompaniets, A. Kudlis, D.V. Zakharov, “Model A of critical dynamics: 5-loop ɛ expansion study”, Physica A: Statistical Mechanics and its Applications, 600 (2022), 127530
V V Prudnikov, P V Prudnikov, E A Pospelov, A S Lyakh, “Simulation of non-equilibrium critical behavior of the 3D isotropic and anisotropic Heisenberg models”, J. Phys.: Conf. Ser., 1740:1 (2021), 012004
Honkonen J., Komarova V M., Molotkov Yu.G., Nalimov M.Yu., Zhavoronkov Yu.A., Mathematical Modeling and Computational Physics 2019 (Mmcp 2019), Epj Web of Conferences, 226, eds. Adam G., Busa J., Hnatic M., E D P Sciences, 2020
Yu. A. Zhavoronkov, M. V. Komarova, Yu. G. Molotkov, M. Yu. Nalimov, J. Honkonen, “Critical dynamics of the phase transition to the superfluid state”, Theoret. and Math. Phys., 200:2 (2019), 1237–1251
Adzhemyan L.Ts. Ivanova E.V. Kompaniets M.V. Vorobyeva S.Y., “Diagram Reduction in Problem of Critical Dynamics of Ferromagnets: 4-Loop Approximation”, J. Phys. A-Math. Theor., 51:15 (2018), 155003
Mera H. Pedersen T.G. Nikolic B.K., “Fast Summation of Divergent Series and Resurgent Transseries From Meijer-G Approximants”, Phys. Rev. D, 97:10 (2018), 105027
Zhong W., Barkema G.T., Panja D., Ball R.C., “Critical Dynamical Exponent of the Two-Dimensional Scalar Phi(4) Model With Local Moves”, Phys. Rev. E, 98:6 (2018), 062128
Lin Y., Wang F., “Linear Relaxation in Large Two-Dimensional Ising Models”, Phys. Rev. E, 93:2 (2016), 022113
Kalagov G.A. Kompaniets M.V. Nalimov M.Yu., “Renormalization-group investigation of a superconducting U( r )-phase transition using five loops calculations”, Nucl. Phys. B, 905 (2016), 16–44
M.V. Kompaniets, “Prediction of the higher-order terms based on Borel resummation with conformal mapping”, J. Phys.: Conf. Ser., 762 (2016), 012075
G. A. Kalagov, M. Yu. Nalimov, M. V. Kompaniets, “Renormalization-group study of a superconducting phase transition: Asymptotic behavior of higher expansion orders and results of three-loop calculations”, Theoret. and Math. Phys., 181:2 (2014), 1448–1458
Kalagov G.A. Nalimov M.Yu., “Higher-Order Asymptotics and Critical Indexes in the Phi(3) Theory”, Nucl. Phys. B, 884 (2014), 672–683
Samuel Friot, David Greynat, “Non-Perturbative Asymptotic Improvement of Perturbation Theory and Mellin–Barnes Representation”, SIGMA, 6 (2010), 079, 23 pp.