Abstract:
In the first order in 1/N for arbitrary dimension 2<d<4 of
space the following quantities are calculated for the N×p
matrix σ model [1] quantized by means of auxiliary scalar
(φ) and vector (Bμ) matrix fields: 1) the anomalous
dimensions of all the fields; 2) the matrix of the anomalous
dimensions of the mixed operators φ and B2 of the
canonical dimension 2; 3) the matrix of the anomalous dimensions
of the four mixed gauge-invariant composite operators of the type
φ2 and GμνGμν of canonical dimension 4
determining four critical exponents ω.
Citation:
A. N. Vasil'ev, M. Yu. Nalimov, Yu. R. Khonkonen, “1/N expansion: Calculation of anomalous dimensions and mixing matrices in the order 1/N for N×p matrix gauge-invariant σ-model”, TMF, 58:2 (1984), 169–183; Theoret. and Math. Phys., 58:2 (1984), 111–120
\Bibitem{VasNalKho84}
\by A.~N.~Vasil'ev, M.~Yu.~Nalimov, Yu.~R.~Khonkonen
\paper $1/N$ expansion: Calculation of anomalous dimensions and mixing matrices in the order $1/N$ for $N\times p$ matrix gauge-invariant $\sigma$-model
\jour TMF
\yr 1984
\vol 58
\issue 2
\pages 169--183
\mathnet{http://mi.mathnet.ru/tmf4444}
\transl
\jour Theoret. and Math. Phys.
\yr 1984
\vol 58
\issue 2
\pages 111--120
\crossref{https://doi.org/10.1007/BF01017914}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1984TG27600002}
Linking options:
https://www.mathnet.ru/eng/tmf4444
https://www.mathnet.ru/eng/tmf/v58/i2/p169
This publication is cited in the following 16 articles:
J. A. Gracey, “Six-dimensional ultraviolet completion of the ℂℙ(N) σ model at two loops”, Mod. Phys. Lett. A, 35:22 (2020), 2050188
Subir Sachdev, Harley D. Scammell, Mathias S. Scheurer, Grigory Tarnopolsky, “Gauge theory for the cuprates near optimal doping”, Phys. Rev. B, 99:5 (2019)
Hrachya Khachatryan, “Higher Derivative Gauge theory in d = 6 and the CP(Nf−1) NLSM”, J. High Energ. Phys., 2019:12 (2019)
Gracey J.A., “Large N-F Quantum Field Theory”, Int. J. Mod. Phys. A, 33:35 (2018), 1830032
Alexander V. Nesterenko, Strong Interactions in Spacelike and Timelike Domains, 2017, 21
Strong Interactions in Spacelike and Timelike Domains, 2017, 183
Moshe Moshe, Jean Zinn-Justin, “Quantum field theory in the large N limit: a review”, Physics Reports, 385:3-6 (2003), 69
Andrea Pelissetto, Paolo Rossi, Ettore Vicari, “Large-n critical behavior of O(n)×O(m) spin models”, Nuclear Physics B, 607:3 (2001), 605
J.A Gracey, “QCD and QED renormalization group functions — a large Nf approach”, Nuclear Physics B - Proceedings Supplements, 51:3 (1996), 24
J.A. Gracey, “Anomalous dimensions of operators in polarized deep inelastic scattering at”, Nuclear Physics B, 480:1-2 (1996), 73
J.A. Gracey, “The QCD β-function at”, Physics Letters B, 373:1-3 (1996), 178
Gil Zumbach, “Importance of the massive modes in the renormalization group 2 + ε dimension”, Nuclear Physics B, 435:3 (1995), 753
A. N. Vasil'ev, A. S. Stepanenko, “A method of calculating the critical dimensions of composite operators in the massless nonlinear σ model”, Theoret. and Math. Phys., 95:1 (1993), 471–481
A. N. Vasil'ev, S. È. Derkachev, N. A. Kivel', A. S. Stepanenko, “Proof of conformal invariance in the critical regime for models of Gross–Neveu type”, Theoret. and Math. Phys., 92:3 (1992), 1047–1054
J.A. Gracey, “Anomalous mass dimension at O(1/N2) in the O(N) Gross-Neveu model”, Physics Letters B, 297:3-4 (1992), 293
S. Hikami, “4 — d expansion for Anderson localization in a strong spin-orbit coupling case”, J. Phyique Lett., 46:16 (1985), 719