Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2019, Volume 200, Number 3, Pages 507–521
DOI: https://doi.org/10.4213/tmf9675
(Mi tmf9675)
 

This article is cited in 5 scientific papers (total in 5 papers)

Kinetic theory of boson gas

J. Honkonena, M. V. Komarovab, Yu. G. Molotkovb, M. Yu. Nalimovb

a National Defence University, Helsinki, Finland
b Saint Petersburg State University, St. Petersburg, Russia
Full-text PDF (428 kB) Citations (5)
References:
Abstract: We construct a quantum kinetic theory of a weakly interacting critical boson gas using the expectation values of products of Heisenberg field operators in the grand canonical ensemble. Using a functional representation for the Wick theorem for time-ordered products, we construct a perturbation theory for the generating functional of these time-dependent Green's functions at a finite temperature. We note some problems of the functional-integral representation and discuss unusual apparent divergences of the perturbation expansion. We propose a regularization of these divergences using attenuating propagators. Using a linear transformation to variables with well-defined scaling dimensions, we construct an infrared effective field theory. We show that the structure of the regularized model is restored by renormalization. We propose a multiplicatively renormalizable infrared effective model of the quantum dynamics of a boson gas.
Keywords: finite-temperature time Green's function, boson gas, infrared effective model, critical dynamics, superfluid phase transition.
Funding agency Grant number
Academy of Finland 325408
This research was supported by the Academy of Finland (Grant No. 325408).
Received: 12.12.2018
Revised: 06.02.2019
English version:
Theoretical and Mathematical Physics, 2019, Volume 200, Issue 3, Pages 1360–1373
DOI: https://doi.org/10.1134/S0040577919090095
Bibliographic databases:
Document Type: Article
MSC: 82C10, 82C27, 82D50
Language: Russian
Citation: J. Honkonen, M. V. Komarova, Yu. G. Molotkov, M. Yu. Nalimov, “Kinetic theory of boson gas”, TMF, 200:3 (2019), 507–521; Theoret. and Math. Phys., 200:3 (2019), 1360–1373
Citation in format AMSBIB
\Bibitem{HonKomMol19}
\by J.~Honkonen, M.~V.~Komarova, Yu.~G.~Molotkov, M.~Yu.~Nalimov
\paper Kinetic theory of boson gas
\jour TMF
\yr 2019
\vol 200
\issue 3
\pages 507--521
\mathnet{http://mi.mathnet.ru/tmf9675}
\crossref{https://doi.org/10.4213/tmf9675}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4017625}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2019TMP...200.1360H}
\elib{https://elibrary.ru/item.asp?id=41682001}
\transl
\jour Theoret. and Math. Phys.
\yr 2019
\vol 200
\issue 3
\pages 1360--1373
\crossref{https://doi.org/10.1134/S0040577919090095}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000488949100009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85073219398}
Linking options:
  • https://www.mathnet.ru/eng/tmf9675
  • https://doi.org/10.4213/tmf9675
  • https://www.mathnet.ru/eng/tmf/v200/i3/p507
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:338
    Full-text PDF :83
    References:29
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024