Abstract:
We use an instantonic approach to calculate the asymptotic behavior of higher orders of the $(4-\epsilon)$-expansion for the scaling function of the pair correlator of the $O(n)$-symmetric $\phi^4$-theory in the minimal subtraction scheme. Our results differ substantially from the known exact expression for the $\epsilon^3$ order of the expansion of the scaling function in the small-$\tau$ domain.
Citation:
M. V. Komarova, M. Yu. Nalimov, “Asymptotic Behavior of Higher-Order Perturbations: Scaling Functions of the $O(n)$-Symmetric $\phi^4$-Theory in the $(4-\epsilon)$-Expansion”, TMF, 129:3 (2001), 387–402; Theoret. and Math. Phys., 129:3 (2001), 1631–1644
\Bibitem{KomNal01}
\by M.~V.~Komarova, M.~Yu.~Nalimov
\paper Asymptotic Behavior of Higher-Order Perturbations: Scaling Functions of the $O(n)$-Symmetric $\phi^4$-Theory in the $(4-\epsilon)$-Expansion
\jour TMF
\yr 2001
\vol 129
\issue 3
\pages 387--402
\mathnet{http://mi.mathnet.ru/tmf544}
\crossref{https://doi.org/10.4213/tmf544}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1905065}
\zmath{https://zbmath.org/?q=an:1037.81562}
\transl
\jour Theoret. and Math. Phys.
\yr 2001
\vol 129
\issue 3
\pages 1631--1644
\crossref{https://doi.org/10.1023/A:1013007232713}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000173128700002}
Linking options:
https://www.mathnet.ru/eng/tmf544
https://doi.org/10.4213/tmf544
https://www.mathnet.ru/eng/tmf/v129/i3/p387
This publication is cited in the following 4 articles:
M. V. Komarova, I. S. Kremnev, M. Yu. Nalimov, “Family of instantons of the Kraichnan model with a frozen velocity field”, Theoret. and Math. Phys., 158:2 (2009), 167–178
M. V. Komarova, M. Yu. Nalimov, “Large-order asymptotic terms in perturbation theory: The first $(4-\epsilon)$-expansion correction to renormalization constants in the $O(n)$-symmetric theory”, Theoret. and Math. Phys., 143:2 (2005), 664–680
Honkonen, J, “Instantons for dynamic models from B to H”, Nuclear Physics B, 714:3 (2005), 292
Honkonen, J, “Large-order asymptotes for dynamic models near equilibrium”, Nuclear Physics B, 707:3 (2005), 493