|
|
Publications in Math-Net.Ru |
Citations |
|
2018 |
1. |
S. C. Anco, M. L. Gandarias, E. Recio, “Conservation laws, symmetries, and line soliton solutions of generalized KP and Boussinesq equations with $p$-power nonlinearities in two dimensions”, TMF, 197:1 (2018), 3–23 ; Theoret. and Math. Phys., 197:1 (2018), 1393–1411 |
24
|
|
2011 |
2. |
M. L. Gandarias, M. S. Bruzón, “Symmetry analysis and exact solutions of some Ostrovsky equations”, TMF, 168:1 (2011), 49–64 ; Theoret. and Math. Phys., 168:1 (2011), 898–911 |
13
|
3. |
M. S. Bruzón, M. L. Gandarias, “Classical and nonclassical symmetries for the Krichever–Novikov equation”, TMF, 168:1 (2011), 24–34 ; Theoret. and Math. Phys., 168:1 (2011), 875–885 |
20
|
|
2009 |
4. |
M. L. Gandarias, “Nonlocal symmetries and reductions for some ordinary differential equations”, TMF, 159:3 (2009), 428–437 ; Theoret. and Math. Phys., 159:3 (2009), 779–786 |
9
|
|
2007 |
5. |
M. L. Gandarias, M. S. Bruzón, “New solutions of the Schwarzian Korteweg–de Vries equation in $2{+}1$ dimensions based on weak symmetries”, TMF, 151:3 (2007), 380–390 ; Theoret. and Math. Phys., 151:3 (2007), 752–761 |
3
|
|
2005 |
6. |
M. L. Gandarias, S. Saez, “Traveling-Wave Solutions of the Calogero–Degasperis–Fokas Equation in $2+1$ Dimensions”, TMF, 144:1 (2005), 44–55 ; Theoret. and Math. Phys., 144:1 (2005), 916–926 |
4
|
|
2003 |
7. |
M. S. Bruzón, M. L. Gandarias, C. Muriel, J. Ramíres, F. R. Romero, “Traveling-Wave Solutions of the Schwarz–Korteweg–de Vries Equation in $2+1$ Dimensions and the Ablowitz–Kaup–Newell–Segur Equation Through Symmetry Reductions”, TMF, 137:1 (2003), 27–39 ; Theoret. and Math. Phys., 137:1 (2003), 1378–1389 |
18
|
8. |
M. S. Bruzón, M. L. Gandarias, C. Muriel, J. Ramíres, S. Saez, F. R. Romero, “The Calogero–Bogoyavlenskii–Schiff Equation in $2+1$ Dimensions”, TMF, 137:1 (2003), 14–26 ; Theoret. and Math. Phys., 137:1 (2003), 1367–1377 |
73
|
9. |
M. L. Gandarias, M. S. Bruzón, J. Ramíres, “Classical Symmetry Reductions of the Schwarz–Korteweg–de Vries Equation in $2+1$ Dimensions”, TMF, 134:1 (2003), 74–84 ; Theoret. and Math. Phys., 134:1 (2003), 62–71 |
7
|
|
Organisations |
|
|
|
|