Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2003, Volume 137, Number 1, Pages 27–39
DOI: https://doi.org/10.4213/tmf242
(Mi tmf242)
 

This article is cited in 18 scientific papers (total in 18 papers)

Traveling-Wave Solutions of the Schwarz–Korteweg–de Vries Equation in $2+1$ Dimensions and the Ablowitz–Kaup–Newell–Segur Equation Through Symmetry Reductions

M. S. Bruzóna, M. L. Gandariasa, C. Muriela, J. Ramíresa, F. R. Romerob

a Universidad de Cadiz
b University of Seville
References:
Abstract: One of the more interesting solutions of the $(2+1)$-dimensional integrable Schwarz–Korteweg–de Vries (SKdV) equation is the soliton solutions. We previously derived a complete group classification for the SKdV equation in $2+1$ dimensions. Using classical Lie symmetries, we now consider traveling-wave reductions with a variable velocity depending on the form of an arbitrary function. The corresponding solutions of the $(2+1)$-dimensional equation involve up to three arbitrary smooth functions. Consequently, the solutions exhibit a rich variety of qualitative behaviors. In particular, we show the interaction of a Wadati soliton with a line soliton. Moreover, via a Miura transformation, the SKdV is closely related to the Ablowitz–Kaup–Newell–Segur (AKNS) equation in $2+1$ dimensions. Using classical Lie symmetries, we consider traveling-wave reductions for the AKNS equation in $2+1$ dimensions. It is interesting that neither of the $(2+1)$-dimensional integrable systems considered admit Virasoro-type subalgebras.
Keywords: partial differential equations, Lie symmetries.
English version:
Theoretical and Mathematical Physics, 2003, Volume 137, Issue 1, Pages 1378–1389
DOI: https://doi.org/10.1023/A:1026092304047
Bibliographic databases:
Language: Russian
Citation: M. S. Bruzón, M. L. Gandarias, C. Muriel, J. Ramíres, F. R. Romero, “Traveling-Wave Solutions of the Schwarz–Korteweg–de Vries Equation in $2+1$ Dimensions and the Ablowitz–Kaup–Newell–Segur Equation Through Symmetry Reductions”, TMF, 137:1 (2003), 27–39; Theoret. and Math. Phys., 137:1 (2003), 1378–1389
Citation in format AMSBIB
\Bibitem{BruGanMur03}
\by M.~S.~Bruz\'on, M.~L.~Gandarias, C.~Muriel, J.~Ram{\'\i}res, F.~R.~Romero
\paper Traveling-Wave Solutions of the Schwarz--Korteweg--de Vries Equation in $2+1$ Dimensions and the Ablowitz--Kaup--Newell--Segur Equation Through Symmetry Reductions
\jour TMF
\yr 2003
\vol 137
\issue 1
\pages 27--39
\mathnet{http://mi.mathnet.ru/tmf242}
\crossref{https://doi.org/10.4213/tmf242}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2048086}
\elib{https://elibrary.ru/item.asp?id=13974300}
\transl
\jour Theoret. and Math. Phys.
\yr 2003
\vol 137
\issue 1
\pages 1378--1389
\crossref{https://doi.org/10.1023/A:1026092304047}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000186557700003}
Linking options:
  • https://www.mathnet.ru/eng/tmf242
  • https://doi.org/10.4213/tmf242
  • https://www.mathnet.ru/eng/tmf/v137/i1/p27
  • This publication is cited in the following 18 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024