|
This article is cited in 18 scientific papers (total in 18 papers)
Traveling-Wave Solutions of the Schwarz–Korteweg–de Vries Equation in $2+1$ Dimensions and the Ablowitz–Kaup–Newell–Segur Equation Through Symmetry Reductions
M. S. Bruzóna, M. L. Gandariasa, C. Muriela, J. Ramíresa, F. R. Romerob a Universidad de Cadiz
b University of Seville
Abstract:
One of the more interesting solutions of the $(2+1)$-dimensional integrable Schwarz–Korteweg–de Vries (SKdV) equation is the soliton solutions. We previously derived a complete group classification for the SKdV equation in $2+1$ dimensions. Using classical Lie symmetries, we now consider traveling-wave reductions with a variable velocity depending on the form of an arbitrary function. The corresponding solutions of the $(2+1)$-dimensional equation involve up to three arbitrary smooth functions. Consequently, the solutions exhibit a rich variety of qualitative behaviors. In particular, we show the interaction of a Wadati soliton with a line soliton. Moreover, via a Miura transformation, the SKdV is closely related to the Ablowitz–Kaup–Newell–Segur (AKNS) equation in $2+1$ dimensions. Using classical Lie symmetries, we consider traveling-wave reductions for the AKNS equation in $2+1$ dimensions. It is interesting that neither of the $(2+1)$-dimensional integrable systems considered admit Virasoro-type subalgebras.
Keywords:
partial differential equations, Lie symmetries.
Citation:
M. S. Bruzón, M. L. Gandarias, C. Muriel, J. Ramíres, F. R. Romero, “Traveling-Wave Solutions of the Schwarz–Korteweg–de Vries Equation in $2+1$ Dimensions and the Ablowitz–Kaup–Newell–Segur Equation Through Symmetry Reductions”, TMF, 137:1 (2003), 27–39; Theoret. and Math. Phys., 137:1 (2003), 1378–1389
Linking options:
https://www.mathnet.ru/eng/tmf242https://doi.org/10.4213/tmf242 https://www.mathnet.ru/eng/tmf/v137/i1/p27
|
|