Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2018, Volume 197, Number 1, Pages 3–23
DOI: https://doi.org/10.4213/tmf9483
(Mi tmf9483)
 

This article is cited in 24 scientific papers (total in 24 papers)

Conservation laws, symmetries, and line soliton solutions of generalized KP and Boussinesq equations with $p$-power nonlinearities in two dimensions

S. C. Ancoa, M. L. Gandariasb, E. Reciob

a Brock University, St. Catharines, Canada
b Cadiz University, Cadiz, Spain
References:
Abstract: Nonlinear generalizations of integrable equations in one dimension, such as the Korteweg–de Vries and Boussinesq equations with $p$-power nonlinearities, arise in many physical applications and are interesting from the analytic standpoint because of their critical behavior. We study analogous nonlinear $p$-power generalizations of the integrable Kadomtsev–Petviashvili and Boussinesq equations in two dimensions. For all $p\ne0$, we present a Hamiltonian formulation of these two generalized equations. We derive all Lie symmetries including those that exist for special powers $p\ne0$. We use Noether's theorem to obtain conservation laws arising from the variational Lie symmetries. Finally, we obtain explicit line soliton solutions for all powers $p>0$ and discuss some of their properties.
Keywords: line soliton, conservation law, Kadomtsev–Petviashvili equation.
Funding agency Grant number
Natural Sciences and Engineering Research Council of Canada (NSERC)
The research of S. C. Anco is supported by an NSERC research grant.
Received: 10.10.2017
English version:
Theoretical and Mathematical Physics, 2018, Volume 197, Issue 1, Pages 1393–1411
DOI: https://doi.org/10.1134/S004057791810001X
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: S. C. Anco, M. L. Gandarias, E. Recio, “Conservation laws, symmetries, and line soliton solutions of generalized KP and Boussinesq equations with $p$-power nonlinearities in two dimensions”, TMF, 197:1 (2018), 3–23; Theoret. and Math. Phys., 197:1 (2018), 1393–1411
Citation in format AMSBIB
\Bibitem{AncGanRec18}
\by S.~C.~Anco, M.~L.~Gandarias, E.~Recio
\paper Conservation laws, symmetries, and line soliton solutions of generalized KP and Boussinesq equations with $p$-power nonlinearities in two dimensions
\jour TMF
\yr 2018
\vol 197
\issue 1
\pages 3--23
\mathnet{http://mi.mathnet.ru/tmf9483}
\crossref{https://doi.org/10.4213/tmf9483}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3859413}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018TMP...197.1393A}
\elib{https://elibrary.ru/item.asp?id=35601313}
\transl
\jour Theoret. and Math. Phys.
\yr 2018
\vol 197
\issue 1
\pages 1393--1411
\crossref{https://doi.org/10.1134/S004057791810001X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000449768100001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85056081578}
Linking options:
  • https://www.mathnet.ru/eng/tmf9483
  • https://doi.org/10.4213/tmf9483
  • https://www.mathnet.ru/eng/tmf/v197/i1/p3
  • This publication is cited in the following 24 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:389
    Full-text PDF :79
    References:48
    First page:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024