Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2011, Volume 168, Number 1, Pages 49–64
DOI: https://doi.org/10.4213/tmf6663
(Mi tmf6663)
 

This article is cited in 13 scientific papers (total in 13 papers)

Symmetry analysis and exact solutions of some Ostrovsky equations

M. L. Gandarias, M. S. Bruzón

Departamento de Matematicas, Universidad de Cadiz, Cadiz, Spain
References:
Abstract: We apply the classical Lie method and the nonclassical method to a generalized Ostrovsky equation (GOE) and to the integrable Vakhnenko equation (VE), which Vakhnenko and Parkes proved to be equivalent to the reduced Ostrovsky equation. Using a simple nonlinear ordinary differential equation, we find that for some polynomials of velocity, the GOE has abundant exact solutions expressible in terms of Jacobi elliptic functions and consequently has many solutions in the form of periodic waves, solitary waves, compactons, etc. The nonclassical method applied to the associated potential system for the VE yields solutions that arise from neither nonclassical symmetries of the VE nor potential symmetries. Some of these equations have interesting behavior such as “nonlinear superposition”.
Keywords: classical symmetry, exact solution, partial differential equation.
English version:
Theoretical and Mathematical Physics, 2011, Volume 168, Issue 1, Pages 898–911
DOI: https://doi.org/10.1007/s11232-011-0073-3
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: M. L. Gandarias, M. S. Bruzón, “Symmetry analysis and exact solutions of some Ostrovsky equations”, TMF, 168:1 (2011), 49–64; Theoret. and Math. Phys., 168:1 (2011), 898–911
Citation in format AMSBIB
\Bibitem{GanBru11}
\by M.~L.~Gandarias, M.~S.~Bruz\'on
\paper Symmetry analysis and exact solutions of some Ostrovsky equations
\jour TMF
\yr 2011
\vol 168
\issue 1
\pages 49--64
\mathnet{http://mi.mathnet.ru/tmf6663}
\crossref{https://doi.org/10.4213/tmf6663}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2021731}
\transl
\jour Theoret. and Math. Phys.
\yr 2011
\vol 168
\issue 1
\pages 898--911
\crossref{https://doi.org/10.1007/s11232-011-0073-3}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79961163722}
Linking options:
  • https://www.mathnet.ru/eng/tmf6663
  • https://doi.org/10.4213/tmf6663
  • https://www.mathnet.ru/eng/tmf/v168/i1/p49
  • This publication is cited in the following 13 articles:
    1. LAKHVEER KAUR, ABDUL-MAJID WAZWAZ, PALLAVI VERMA, “Exploring nonclassical symmetries for Benjamin-Ono equation, leading to exact solutions”, Rom. Rep. Phys., 76:2 (2024), 109  crossref
    2. S.C. Anco, M.L. Gandarias, “Symmetries, conservation laws, and generalized travelling waves for a forced Ostrovsky equation”, Partial Differential Equations in Applied Mathematics, 5 (2022), 100230  crossref
    3. Erofeev I V., Leontieva V A., “Dispersion and Spatial Localization of Bending Waves Propagating in a Timoshenko Beam Laying on a Nonlinear Elastic Base”, Mech. Sol., 56:4 (2021), 443–454  crossref  isi
    4. Verma P., Kaur L., “Nonclassical Symmetries and Analytic Solutions to Kawahara Equation”, Int. J. Geom. Methods Mod. Phys., 17:8 (2020), 2050118  crossref  mathscinet  isi  scopus
    5. Erofeev I V., Leonteva V A., “Anharmonic Waves in a Mindlin-Herrmann Rod Immersed in a Nonlinearly Elastic Medium”, Mech. Sol., 55:8 (2020), 1284–1297  crossref  isi
    6. V I Erofeev, A V Leonteva, “Localized bending and longitudinal waves in rods interacting with external nonlinear elastic medium”, J. Phys.: Conf. Ser., 1348:1 (2019), 012004  crossref
    7. Bruzon M.S., Recio E., de la Rosa R., Gandarias M.L., “Local Conservation Laws, Symmetries, and Exact Solutions For a Kudryashov-Sinelshchikov Equation”, Math. Meth. Appl. Sci., 41:4 (2018), 1631–1641  crossref  mathscinet  zmath  isi  scopus
    8. Erofeev V., Kolesov D., Leonteva A., International Conference on Modern Trends in Manufacturing Technologies and Equipment (Icmtmte 2018), Matec Web of Conferences, 224, eds. Bratan S., Gorbatyuk S., Leonov S., Roshchupkin S., E D P Sciences, 2018  crossref  isi
    9. Najafi R. Bahrami F. Hashemi M.S., “Classical and nonclassical Lie symmetry analysis to a class of nonlinear time-fractional differential equations”, Nonlinear Dyn., 87:3 (2017), 1785–1796  crossref  mathscinet  zmath  isi  scopus
    10. A. V. Bochkarev, A. I. Zemlyanukhin, “The geometric series method for constructing exact solutions to nonlinear evolution equations”, Comput. Math. Math. Phys., 57:7 (2017), 1111–1123  mathnet  crossref  crossref  isi  elib
    11. Bahrami F. Najafi R. Hashemi M.S., “On the Invariant Solutions of Space/Time-Fractional Diffusion Equations”, Indian J. Phys., 91:12 (2017), 1571–1579  crossref  isi  scopus
    12. Kaur L., Gupta R.K., “Some Invariant Solutions of Field Equations With Axial Symmetry For Empty Space Containing An Electrostatic Field”, Appl. Math. Comput., 231 (2014), 560–565  crossref  mathscinet  zmath  isi  scopus
    13. Hashemi M.S., Nucci M.C., Abbasbandy S., “Group Analysis of the Modified Generalized Vakhnenko Equation”, Commun. Nonlinear Sci. Numer. Simul., 18:4 (2013), 867–877  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:638
    Full-text PDF :290
    References:49
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025