Abstract:
Classical reductions of a (2+1)(2+1)-dimensional integrable Schwarz–Korteweg–de Vries equation are classified. These reductions to systems of partial differential equations in 1+11+1 dimensions admit symmetries that lead to further reductions, i.e., to systems of ordinary differential equations. All these systems have been reduced to second-order ordinary differential equations. We present some particular solutions involving two arbitrary functions.
Citation:
M. L. Gandarias, M. S. Bruzón, J. Ramíres, “Classical Symmetry Reductions of the Schwarz–Korteweg–de Vries Equation in 2+12+1 Dimensions”, TMF, 134:1 (2003), 74–84; Theoret. and Math. Phys., 134:1 (2003), 62–71
This publication is cited in the following 7 articles:
Farrukh Shehzad, Aly R. Seadawy, Sarfaraz Ahmed, Syed T. R. Rizvi, “Mathematical modeling and component generalization of (2+1)-dimensional Schwarz–Kortweg–de Vries model in shallow water waves”, Mod. Phys. Lett. B, 2024
Weifang Liu, Cewen Cao, Xiao Yang, Xiaoxue Xu, “The (2+1)‐dimensional Schwarzian Korteweg–de Vries equation and its generalizations with discrete Lax matrices”, Math Methods in App Sciences, 2024
Sarfaraz Ahmed, Aly R. Seadawy, Syed T. R. Rizvi, Umar Raza, “Multi-Peak and Propagation Behavior of M-Shape Solitons in (2 + 1)-Dimensional Integrable Schwarz-Korteweg-de Vries Problem”, Fractal Fract, 7:10 (2023), 709
Li X. Zhang M., “Darboux Transformation and Soliton Solutions of the (2+1)-Dimensional Schwarz-Korteweg-de Vries Equation”, Mod. Phys. Lett. B, 34:25 (2020), 2050270
Ramirez, J, “New classes of solutions for the Schwarzian Korteweg-de Vries equation in (2+1) dimensions”, Journal of Physics A-Mathematical and Theoretical, 40:16 (2007), 4351
Ramirez, J, “Multiple solutions for the Schwarzian Korteweg-de Vries equation in (2+1) dimensions”, Chaos Solitons & Fractals, 32:2 (2007), 682
M. S. Bruzón, M. L. Gandarias, C. Muriel, J. Ramíres, F. R. Romero, “Traveling-Wave Solutions of the Schwarz–Korteweg–de Vries Equation in $2+1$ Dimensions and the Ablowitz–Kaup–Newell–Segur Equation Through Symmetry Reductions”, Theoret. and Math. Phys., 137:1 (2003), 1378–1389