Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2003, Volume 134, Number 1, Pages 74–84
DOI: https://doi.org/10.4213/tmf141
(Mi tmf141)
 

This article is cited in 7 scientific papers (total in 7 papers)

Classical Symmetry Reductions of the Schwarz–Korteweg–de Vries Equation in 2+12+1 Dimensions

M. L. Gandarias, M. S. Bruzón, J. Ramíres

Universidad de Cadiz
Full-text PDF (653 kB) Citations (7)
References:
Abstract: Classical reductions of a (2+1)(2+1)-dimensional integrable Schwarz–Korteweg–de Vries equation are classified. These reductions to systems of partial differential equations in 1+11+1 dimensions admit symmetries that lead to further reductions, i.e., to systems of ordinary differential equations. All these systems have been reduced to second-order ordinary differential equations. We present some particular solutions involving two arbitrary functions.
Keywords: partial differential equations, Lie symmetries.
English version:
Theoretical and Mathematical Physics, 2003, Volume 134, Issue 1, Pages 62–71
DOI: https://doi.org/10.1023/A:1021867622943
Bibliographic databases:
Language: Russian
Citation: M. L. Gandarias, M. S. Bruzón, J. Ramíres, “Classical Symmetry Reductions of the Schwarz–Korteweg–de Vries Equation in 2+12+1 Dimensions”, TMF, 134:1 (2003), 74–84; Theoret. and Math. Phys., 134:1 (2003), 62–71
Citation in format AMSBIB
\Bibitem{GanBruRam03}
\by M.~L.~Gandarias, M.~S.~Bruz\'on, J.~Ram{\'\i}res
\paper Classical Symmetry Reductions of the Schwarz--Korteweg--de~Vries Equation in $2+1$ Dimensions
\jour TMF
\yr 2003
\vol 134
\issue 1
\pages 74--84
\mathnet{http://mi.mathnet.ru/tmf141}
\crossref{https://doi.org/10.4213/tmf141}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2021731}
\zmath{https://zbmath.org/?q=an:1068.37049}
\transl
\jour Theoret. and Math. Phys.
\yr 2003
\vol 134
\issue 1
\pages 62--71
\crossref{https://doi.org/10.1023/A:1021867622943}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000181042100006}
Linking options:
  • https://www.mathnet.ru/eng/tmf141
  • https://doi.org/10.4213/tmf141
  • https://www.mathnet.ru/eng/tmf/v134/i1/p74
  • This publication is cited in the following 7 articles:
    1. Farrukh Shehzad, Aly R. Seadawy, Sarfaraz Ahmed, Syed T. R. Rizvi, “Mathematical modeling and component generalization of (2+1)-dimensional Schwarz–Kortweg–de Vries model in shallow water waves”, Mod. Phys. Lett. B, 2024  crossref
    2. Weifang Liu, Cewen Cao, Xiao Yang, Xiaoxue Xu, “The (2+1)‐dimensional Schwarzian Korteweg–de Vries equation and its generalizations with discrete Lax matrices”, Math Methods in App Sciences, 2024  crossref
    3. Sarfaraz Ahmed, Aly R. Seadawy, Syed T. R. Rizvi, Umar Raza, “Multi-Peak and Propagation Behavior of M-Shape Solitons in (2 + 1)-Dimensional Integrable Schwarz-Korteweg-de Vries Problem”, Fractal Fract, 7:10 (2023), 709  crossref
    4. Li X. Zhang M., “Darboux Transformation and Soliton Solutions of the (2+1)-Dimensional Schwarz-Korteweg-de Vries Equation”, Mod. Phys. Lett. B, 34:25 (2020), 2050270  crossref  mathscinet  isi
    5. Ramirez, J, “New classes of solutions for the Schwarzian Korteweg-de Vries equation in (2+1) dimensions”, Journal of Physics A-Mathematical and Theoretical, 40:16 (2007), 4351  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    6. Ramirez, J, “Multiple solutions for the Schwarzian Korteweg-de Vries equation in (2+1) dimensions”, Chaos Solitons & Fractals, 32:2 (2007), 682  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    7. M. S. Bruzón, M. L. Gandarias, C. Muriel, J. Ramíres, F. R. Romero, “Traveling-Wave Solutions of the Schwarz–Korteweg–de Vries Equation in $2+1$ Dimensions and the Ablowitz–Kaup–Newell–Segur Equation Through Symmetry Reductions”, Theoret. and Math. Phys., 137:1 (2003), 1378–1389  mathnet  crossref  crossref  mathscinet  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:337
    Full-text PDF :194
    References:55
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025