Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2005, Volume 144, Number 1, Pages 44–55
DOI: https://doi.org/10.4213/tmf1830
(Mi tmf1830)
 

This article is cited in 4 scientific papers (total in 4 papers)

Traveling-Wave Solutions of the Calogero–Degasperis–Fokas Equation in $2+1$ Dimensions

M. L. Gandarias, S. Saez

Universidad de Cadiz
References:
Abstract: Soliton solutions are among the more interesting solutions of the $(2+1)$-dimensional integrable Calogero–Degasperis–Fokas (CDF) equation. We previously derived a complete group classiffication for the CDF equation in $2+1$ dimensions. Using classical Lie symmetries, we now consider traveling-wave reductions with a variable velocity depending on an arbitrary function. The corresponding solutions of the $(2+1)$-dimensional equation involve up to three arbitrary smooth functions. The solutions consequently exhibit a rich variety of qualitative behaviors. Choosing the arbitrary functions appropriately, we exhibit solitary waves and bound states.
Keywords: Lie symmetries, partial differential equations, solitary waves.
English version:
Theoretical and Mathematical Physics, 2005, Volume 144, Issue 1, Pages 916–926
DOI: https://doi.org/10.1007/s11232-005-0118-6
Bibliographic databases:
Language: Russian
Citation: M. L. Gandarias, S. Saez, “Traveling-Wave Solutions of the Calogero–Degasperis–Fokas Equation in $2+1$ Dimensions”, TMF, 144:1 (2005), 44–55; Theoret. and Math. Phys., 144:1 (2005), 916–926
Citation in format AMSBIB
\Bibitem{GanSae05}
\by M.~L.~Gandarias, S.~Saez
\paper Traveling-Wave Solutions of the Calogero--Degasperis--Fokas Equation in $2+1$ Dimensions
\jour TMF
\yr 2005
\vol 144
\issue 1
\pages 44--55
\mathnet{http://mi.mathnet.ru/tmf1830}
\crossref{https://doi.org/10.4213/tmf1830}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2194258}
\zmath{https://zbmath.org/?q=an:1178.37073}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2005TMP...144..916G}
\elib{https://elibrary.ru/item.asp?id=17702855}
\transl
\jour Theoret. and Math. Phys.
\yr 2005
\vol 144
\issue 1
\pages 916--926
\crossref{https://doi.org/10.1007/s11232-005-0118-6}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000231408800006}
Linking options:
  • https://www.mathnet.ru/eng/tmf1830
  • https://doi.org/10.4213/tmf1830
  • https://www.mathnet.ru/eng/tmf/v144/i1/p44
  • This publication is cited in the following 4 articles:
    1. Jhangeer A., Rezazadeh H., Abazari R., Yildirim K., Sharif S., Ibraheem F., “Lie Analysis, Conserved Quantities and Solitonic Structures of Calogero-Degasperis-Fokas Equation”, Alex. Eng. J., 60:2 (2021), 2513–2523  crossref  isi
    2. Saez S., de la Rosa R., Recio E., Garrido T.M., Bruzon M.S., “Lie Symmetries and Conservation Laws For a Generalized (2+1)-Dimensional Nonlinear Evolution Equation”, J. Math. Chem., 58:4 (2020), 775–798  crossref  mathscinet  isi  scopus
    3. Choi J.H., Kim H., “Bell-Shaped and Kink-Shaped Solutions of the Generalized Benjamin-Bona-Mahony-Burgers Equation”, Results Phys., 7 (2017), 2369–2374  crossref  isi  scopus
    4. Ozer, T, “New exact solutions to the CDF equations”, Chaos Solitons & Fractals, 39:3 (2009), 1371  crossref  mathscinet  zmath  adsnasa  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:495
    Full-text PDF :244
    References:63
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025