|
This article is cited in 73 scientific papers (total in 73 papers)
The Calogero–Bogoyavlenskii–Schiff Equation in $2+1$ Dimensions
M. S. Bruzóna, M. L. Gandariasa, C. Muriela, J. Ramíresa, S. Saeza, F. R. Romerob a Universidad de Cadiz
b University of Seville
Abstract:
We use the classical and nonclassical methods to obtain symmetry reductions and exact solutions of the $(2+1)$-dimensional integrable Calogero–Bogoyavlenskii–Schiff equation. Although this $(2+1)$-dimensional equation arises in a nonlocal form, it can be written as a system of differential equations and, in potential form, as a fourth-order partial differential equation. The classical and nonclassical methods yield some exact solutions of the
$(2+1)$-dimensional equation that involve several arbitrary functions and hence exhibit a rich variety of qualitative behavior.
Keywords:
partial differential equations, symmetries.
Citation:
M. S. Bruzón, M. L. Gandarias, C. Muriel, J. Ramíres, S. Saez, F. R. Romero, “The Calogero–Bogoyavlenskii–Schiff Equation in $2+1$ Dimensions”, TMF, 137:1 (2003), 14–26; Theoret. and Math. Phys., 137:1 (2003), 1367–1377
Linking options:
https://www.mathnet.ru/eng/tmf241https://doi.org/10.4213/tmf241 https://www.mathnet.ru/eng/tmf/v137/i1/p14
|
Statistics & downloads: |
Abstract page: | 551 | Full-text PDF : | 246 | References: | 60 | First page: | 1 |
|