Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Kachurovskii, Alexander Grigoryevich

Kachurovskii, Alexander Grigoryevich
Doctor of physico-mathematical sciences (2000)
Speciality: 01.01.01 (Real analysis, complex analysis, and functional analysis)
Birth date: 21.01.1961
E-mail:
Keywords: ergodic theory, rates of convergence in ergodic theorems, Fejer sums, unifications of ergodic theorems and martingale convergence theorems
UDC: 517.987, 519.214, 519.216
MSC: 28D, 37A, 60F, 60G

Subject:

It was proved (1996) that a power rate of convergence in von Neumanns ergodic theorem is equivalent to the power (with the same exponent) singularity at zero point of a spectral measure of averaging function with respect to the dynamical system. I.e. it was shown that the estimates of convergence rates in this ergodic theorem are necessarily the spectral ones.

Estimates of the rates of convergence were obtained (1996; since 2010 – with the students): in von Neumanns ergodic theorem – via the singularity at zero point of the spectral measure, and via the speed of decay of correlations (i.e., the Fourier coefficients of this measure); in Birkhoffs ergodic theorem – via the rate of convergence in von Neumanns theorem, and via a speed of decay of probabilities of large deviations. Asymptotically exact estimates of the rates of convergence are obtained in both these ergodic theorems: for certain well-known billiards, and Anosov systems.

It was shown (1998) that both ergodic averages and martingales can be viewed as particular degenerate cases of the one new general class of stochastic processes; convergences of this new general process a.e. (an extra condition of integrability of the supremum of module of the process was omitted by the student I.V. Podvigin in 2010) and in the norm, are proved – and both maximal and dominant estimates take place, too.

It turns out (2018), that the Fejer sums for measures on the circle and the norms of the deviations from the limit in the von Neumann ergodic theorem both are calculating, in fact, with the same formulas (by integrating of the Fejer kernels) – and so, this ergodic theorem is a statement about the asymptotics of the growth of the Fejer sums at zero for the corresponding spectral measure. As a result, available in the harmonic analysis literature, numerous estimates for the deviations of Fejer sums at a point allowed to obtain new estimates for the rate of convergence in this ergodic theorem.

It was proved (2019; with I.V. Podvigin) the existence of estimates of the rate of convergence in the Birkhoff theorem which hold a.e. (for the ergodic case); criteria for the maximum possible such a rate were obtained.

Biography

Graduated from Faculty of Mathematics and Mechanics of Novosibirsk State University in 1983 (Department of Mathematical Analysis). Ph.D thesis was defended in 1987 at Sobolev Institute of Mathematics, Novosibirsk. D.Sci thesis was defended in 1999 at Steklov Mathematical Institute at St. Petersburg. Principal place of work since 1983 – Sobolev Institute of Mathematics (with an interruption in 1997–1999 for the doctorate at Steklov Mathematical Institute at St. Petersburg).

   
Main publications:
  1. Kachurovskii A. G., “Rates of convergence in ergodic theorems”, Russian Math. Surveys, 51:4 (1996), 653–703  crossref  mathscinet  zmath  adsnasa  isi  scopus
  2. Kachurovskii A. G., “General theories unifying ergodic averages and martingales”, Proc. Steklov Inst. Math., 256 (2007), 160–187  crossref  mathscinet  zmath  scopus
  3. Kachurovskii A. G., Podvigin I. V., “Estimates of the rate of convergence in the von Neumann and Birkhoff ergodic theorems”, Trans. Moscow Math. Soc., 77 (2016), 1–53  crossref  mathscinet  zmath  scopus
  4. Kachurovskii A. G., Podvigin I. V., “Fejer Sums for Periodic Measures and the von Neumann Ergodic Theorem”, Dokl. Math., 98:1 (2018), 344–347  crossref  zmath  isi  scopus
  5. Kachurovskii A. G., Podvigin I. V., “Measuring the rate of convergence in the Birkhoff ergodic theorem”, Math. Notes, 106:1–2 (2019), 52–62  crossref  mathscinet  zmath  isi  scopus

https://www.mathnet.ru/eng/person17305
List of publications on Google Scholar
https://mathscinet.ams.org/mathscinet/MRAuthorID/238538
https://elibrary.ru/author_items.asp?spin=8474-8691
https://orcid.org/0000-0002-2747-2660
https://publons.com/researcher/1578477
https://www.webofscience.com/wos/author/record/N-2379-2013
https://www.scopus.com/authid/detail.url?authorId=55904525500
https://www.researchgate.net/profile/Alexander-Kachurovskii

Publications in Math-Net.Ru Citations
2024
1. A. G. Kachurovskii, I. V. Podvigin, V. E. Todikov, A. J. Khakimbaev, “A spectral criterion for power-law convergence rate in the ergodic theorem for ${\Bbb Z}^d$ and ${\Bbb R}^d$ actions”, Sibirsk. Mat. Zh., 65:1 (2024),  92–114  mathnet 1
2023
2. A. G. Kachurovskii, I. V. Podvigin, A. J. Khakimbaev, “Uniform Convergence on Subspaces in von Neumann Ergodic Theorem with Discrete Time”, Mat. Zametki, 113:5 (2023),  713–730  mathnet  mathscinet; Math. Notes, 113:5 (2023), 680–693  scopus 3
3. A. G. Kachurovskii, I. V. Podvigin, V. E. Todikov, “Uniform convergence on subspaces in von Neumann's ergodic theorem with continuous time”, Sib. Èlektron. Mat. Izv., 20:1 (2023),  183–206  mathnet 4
2021
4. A. G. Kachurovskii, I. V. Podvigin, A. A. Svishchev, “Zero-One law for the rates of convergence in the Birkhoff ergodic theorem with continuous time”, Mat. Tr., 24:2 (2021),  65–80  mathnet 3
2020
5. A. G. Kachurovskii, M. N. Lapshtaev, A. J. Khakimbaev, “Von Neumann's ergodic theorem and Fejer sums for signed measures on the circle”, Sib. Èlektron. Mat. Izv., 17 (2020),  1313–1321  mathnet
6. A. G. Kachurovskii, I. V. Podvigin, A. A. Svishchev, “The maximum pointwise rate of convergence in Birkhoff's ergodic theorem”, Zap. Nauchn. Sem. POMI, 498 (2020),  18–25  mathnet 4
2019
7. A. G. Kachurovskii, I. V. Podvigin, “Measuring the Rate of Convergence in the Birkhoff Ergodic Theorem”, Mat. Zametki, 106:1 (2019),  40–52  mathnet  mathscinet  elib; Math. Notes, 106:1 (2019), 52–62  isi  scopus 10
2018
8. A. G. Kachurovskii, “The Fejer integrals and the von Neumann ergodic theorem with continuous time”, Zap. Nauchn. Sem. POMI, 474 (2018),  171–182  mathnet 2
2017
9. A. G. Kachurovskiĭ, I. V. Podvigin, “Large deviations of the ergodic averages: from Hölder continuity to continuity almost everywhere”, Mat. Tr., 20:1 (2017),  97–120  mathnet  elib; Siberian Adv. Math., 28:1 (2018), 23–38  scopus 4
2016
10. A. G. Kachurovskii, I. V. Podvigin, “Estimates of the rate of convergence in the von Neumann and Birkhoff ergodic theorems”, Tr. Mosk. Mat. Obs., 77:1 (2016),  1–66  mathnet  elib; Trans. Moscow Math. Soc., 77 (2016), 1–53  scopus 27
2013
11. A. G. Kachurovskii, I. V. Podvigin, “Large Deviations and the Rate of Convergence in the Birkhoff Ergodic Theorem”, Mat. Zametki, 94:4 (2013),  569–577  mathnet  mathscinet  zmath  elib; Math. Notes, 94:4 (2013), 524–531  isi  elib  scopus 13
2012
12. A. G. Kachurovskii, V. V. Sedalishchev, “On the Constants in the Estimates of the Rate of Convergence in the Birkhoff Ergodic Theorem”, Mat. Zametki, 91:4 (2012),  624–628  mathnet  mathscinet  elib; Math. Notes, 91:4 (2012), 582–587  isi  elib  scopus 6
2011
13. A. G. Kachurovskii, V. V. Sedalishchev, “Constants in estimates for the rates of convergence in von Neumann's and Birkhoff's ergodic theorems”, Mat. Sb., 202:8 (2011),  21–40  mathnet  mathscinet  zmath  elib; Sb. Math., 202:8 (2011), 1105–1125  isi  scopus 17
14. N. A. Dzhulaĭ, A. G. Kachurovskiĭ, “Constants in the estimates of the rate of convergence in von Neumann's ergodic theorem with continuous time”, Sibirsk. Mat. Zh., 52:5 (2011),  1039–1052  mathnet  mathscinet; Siberian Math. J., 52:5 (2011), 824–835  isi  scopus 11
2010
15. A. G. Kachurovskii, V. V. Sedalishchev, “On the Constants in the Estimates of the Rate of Convergence in von Neumann's Ergodic Theorem”, Mat. Zametki, 87:5 (2010),  756–763  mathnet  mathscinet  elib; Math. Notes, 87:5 (2010), 720–727  isi  scopus 9
16. A. G. Kachurovskii, A. V. Reshetenko, “On the rate of convergence in von Neumann's ergodic theorem with continuous time”, Mat. Sb., 201:4 (2010),  25–32  mathnet  mathscinet  zmath  elib; Sb. Math., 201:4 (2010), 493–500  isi  elib  scopus 13
2007
17. A. G. Kachurovskii, “General Theories Unifying Ergodic Averages and Martingales”, Trudy Mat. Inst. Steklova, 256 (2007),  172–200  mathnet  mathscinet  zmath  elib; Proc. Steklov Inst. Math., 256 (2007), 160–187  elib  scopus 8
2006
18. A. G. Kachurovskii, “The entropy brick of an automorphism of a Lebesgue space”, Mat. Zametki, 80:6 (2006),  943–945  mathnet  mathscinet  zmath  elib; Math. Notes, 80:6 (2006), 885–887  isi  elib  scopus
1999
19. A. G. Kachurovskii, “Convergence of averages in the ergodic theorem for groups $\mathbb Z^d$”, Zap. Nauchn. Sem. POMI, 256 (1999),  121–128  mathnet  mathscinet  zmath  elib; J. Math. Sci. (New York), 107:5 (2001), 4231–4236 8
1998
20. A. G. Kachurovskii, “Martingale ergodic theorem”, Mat. Zametki, 64:2 (1998),  311–314  mathnet  mathscinet  zmath; Math. Notes, 64:2 (1998), 266–269  isi 12
1996
21. A. G. Kachurovskii, “Spectral measures and convergence rates in the ergodic theorem”, Dokl. Akad. Nauk, 347:5 (1996),  593–596  mathnet  mathscinet  zmath
22. A. G. Kachurovskii, “The rate of convergence in ergodic theorems”, Uspekhi Mat. Nauk, 51:4(310) (1996),  73–124  mathnet  mathscinet  zmath  elib; Russian Math. Surveys, 51:4 (1996), 653–703  isi  scopus 115
1992
23. A. G. Kachurovskii, “Fluctuation of means in the Birkhoff-Khinchin ergodic theorem”, Trudy Inst. Mat. SO RAN, 21 (1992),  52–86  mathnet  mathscinet  zmath
24. A. G. Kachurovskii, “Time fluctuations in the statistical ergodic theorem”, Mat. Zametki, 52:1 (1992),  146–148  mathnet  mathscinet  zmath; Math. Notes, 52:1 (1992), 744–745  isi
1991
25. A. G. Kachurovskii, “A fluctuation ergodic theorem”, Dokl. Akad. Nauk SSSR, 317:4 (1991),  823–826  mathnet  mathscinet  zmath; Dokl. Math., 43:2 (1991), 537–539 2
26. A. G. Kachurovskii, “Fluctuation of averages in the strong law of large numbers”, Mat. Zametki, 50:5 (1991),  151–153  mathnet  mathscinet  zmath; Math. Notes, 50:5 (1991), 1202–1203  isi 3
1990
27. A. G. Kachurovskii, “Boundedness of the fluctuation of mean sequences in the ergodic Birkhoff–Khinchin theorem”, Dokl. Akad. Nauk SSSR, 315:3 (1990),  530–532  mathnet  mathscinet; Dokl. Math., 42:3 (1991), 810–812 2
1986
28. A. G. Kachurovskii, “Existence of an invariant measure in topological dynamical systems”, Sibirsk. Mat. Zh., 27:4 (1986),  203–207  mathnet  mathscinet  zmath

Presentations in Math-Net.Ru
1. Rates of convergence in the von Neumann ergodic theorem
A. G. Kachurovskii
School and Workshop on Random Point Processes
November 2, 2022 10:45   
2. Суммы Фейера и эргодическая теорема фон Неймана
A. G. Kachurovskii
Seminar on Probability Theory and Mathematical Statistics
October 12, 2018 18:00
3. Суммы Фейера периодических мер и эргодическая теорема фон Неймана
A. G. Kachurovskii
Dynamical systems and differential equations
October 8, 2018 18:30
4. Rates of convergence in ergodic theorems for Anosov diffeomorphisms
Alexander Kachurovskii
International Conference “Anosov Systems and Modern Dynamics” dedicated to the 80th anniversary of Dmitry Anosov
December 23, 2016 15:40   
5. Deviations of Fejer sums and rates of convergence in the von Neumann ergodic theorem
A. G. Kachurovskii
International Conference "Geometric Analysis and Control Theory"
December 8, 2016 15:00   
6. Оценки скоростей сходимости в эргодических теоремах фон Неймана и Биркгофа
A. G. Kachurovskii
Seminar on Probability Theory and Mathematical Statistics
October 4, 2013 20:00

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024