Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2018, Volume 474, Pages 171–182 (Mi znsl6676)  

This article is cited in 2 scientific papers (total in 2 papers)

The Fejer integrals and the von Neumann ergodic theorem with continuous time

A. G. Kachurovskii

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
Full-text PDF (178 kB) Citations (2)
References:
Abstract: The Fejer integrals for finite measures on the real line and the norms of the deviations from the limit in the von Neumann ergodic theorem both are calculating, in fact, with the same formulas (by integrating of the Fejer kernels) – and so, this ergodic theorem is a statement about the asymptotic of the growth of the Fejer integrals at zero point of the spectral measure of corresponding dynamical system. It gives a possibility to rework well-known estimates of the rates of convergence in the von Neumann ergodic theorem into the estimates of the Fejer integrals in the point for finite measures: for example, we obtain natural criteria of polynomial growth and polynomial decay of these integrals. And vice versa, numerous in the literature estimates of the deviations of Fejer integrals in the point allow to obtain new estimates of the rate of convergence in this ergodic theorem.
Key words and phrases: the Fejer integrals, criteria of polynomial growth and polynomial decay, the von Neumann ergodic theorem, stationary in wide sense processes.
Funding agency Grant number
Siberian Branch of Russian Academy of Sciences I.1.2., проект № 0314-2016-0005
Received: 12.11.2018
Document Type: Article
UDC: 517.5+517.987+519.214
Language: Russian
Citation: A. G. Kachurovskii, “The Fejer integrals and the von Neumann ergodic theorem with continuous time”, Probability and statistics. Part 27, Zap. Nauchn. Sem. POMI, 474, POMI, St. Petersburg, 2018, 171–182
Citation in format AMSBIB
\Bibitem{Kac18}
\by A.~G.~Kachurovskii
\paper The Fejer integrals and the von Neumann ergodic theorem with continuous time
\inbook Probability and statistics. Part~27
\serial Zap. Nauchn. Sem. POMI
\yr 2018
\vol 474
\pages 171--182
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6676}
Linking options:
  • https://www.mathnet.ru/eng/znsl6676
  • https://www.mathnet.ru/eng/znsl/v474/p171
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024