Abstract:
We consider the power-law uniform (in the operator norm) convergence on vector subspaces with their own norms in the von Neumann ergodic theorem with discrete time. All possible exponents of the considered power-law convergence are found; for each of these exponents, spectral criteria for such convergence are given and the complete description of all such subspaces is obtained. Uniform convergence on the whole space takes place only in the trivial cases, which explains the interest in uniform convergence precisely on subspaces. In addition, by the way, old estimates of the rates of convergence in the von Neumann ergodic theorem for measure-preserving mappings are generalized and refined.
Keywords:
von Neumann ergodic theorem , rate of convergence in ergodic theorems,
power-law uniform convergence.
This work was carried out in the framework of the state assignment at Institute of Mathematics, Siberian Branch of Russian Academy of Sciences (grant no. FWNF-2022-0004).
Citation:
A. G. Kachurovskii, I. V. Podvigin, A. J. Khakimbaev, “Uniform Convergence on Subspaces in von Neumann Ergodic
Theorem with Discrete Time”, Mat. Zametki, 113:5 (2023), 713–730; Math. Notes, 113:5 (2023), 680–693
\Bibitem{KacPodKha23}
\by A.~G.~Kachurovskii, I.~V.~Podvigin, A.~J.~Khakimbaev
\paper Uniform Convergence on Subspaces in von Neumann Ergodic
Theorem with Discrete Time
\jour Mat. Zametki
\yr 2023
\vol 113
\issue 5
\pages 713--730
\mathnet{http://mi.mathnet.ru/mzm13739}
\crossref{https://doi.org/10.4213/mzm13739}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4602429}
\transl
\jour Math. Notes
\yr 2023
\vol 113
\issue 5
\pages 680--693
\crossref{https://doi.org/10.1134/S0001434623050073}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85163150206}
Linking options:
https://www.mathnet.ru/eng/mzm13739
https://doi.org/10.4213/mzm13739
https://www.mathnet.ru/eng/mzm/v113/i5/p713
This publication is cited in the following 3 articles:
A. G. Kachurovskii, I. V. Podvigin, V. È. Todikov, A. Zh. Khakimbaev, “A Spectral Criterion for Power-Law Convergence Rate in the Ergodic Theorem for {𝕑}^{d} and {𝕉}^{d} Actions”, Sib Math J, 65:1 (2024), 76
A. G. Kachurovskii, I. V. Podvigin, V. E. Todikov, A. Zh. Khakimbaev, “Spektralnyi kriterii stepennoi skorosti skhodimosti v ergodicheskoi teoreme dlya Zd i Rd deistvii”, Sib. matem. zhurn., 65:1 (2024), 92–114
I. V. Podvigin, “On the rate of convergence of ergodic averages for functions of Gordin space”, Vladikavk. matem. zhurn., 26:2 (2024), 95–102