Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2023, Volume 113, Issue 5, Pages 713–730
DOI: https://doi.org/10.4213/mzm13739
(Mi mzm13739)
 

This article is cited in 3 scientific papers (total in 3 papers)

Uniform Convergence on Subspaces in von Neumann Ergodic Theorem with Discrete Time

A. G. Kachurovskiia, I. V. Podvigina, A. J. Khakimbaevb

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
b Novosibirsk State University
Full-text PDF (648 kB) Citations (3)
References:
Abstract: We consider the power-law uniform (in the operator norm) convergence on vector subspaces with their own norms in the von Neumann ergodic theorem with discrete time. All possible exponents of the considered power-law convergence are found; for each of these exponents, spectral criteria for such convergence are given and the complete description of all such subspaces is obtained. Uniform convergence on the whole space takes place only in the trivial cases, which explains the interest in uniform convergence precisely on subspaces. In addition, by the way, old estimates of the rates of convergence in the von Neumann ergodic theorem for measure-preserving mappings are generalized and refined.
Keywords: von Neumann ergodic theorem , rate of convergence in ergodic theorems, power-law uniform convergence.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation FWNF-2022-0004
This work was carried out in the framework of the state assignment at Institute of Mathematics, Siberian Branch of Russian Academy of Sciences (grant no. FWNF-2022-0004).
Received: 26.09.2022
Revised: 01.12.2022
English version:
Mathematical Notes, 2023, Volume 113, Issue 5, Pages 680–693
DOI: https://doi.org/10.1134/S0001434623050073
Bibliographic databases:
Document Type: Article
UDC: 517.987+519.214
Language: Russian
Citation: A. G. Kachurovskii, I. V. Podvigin, A. J. Khakimbaev, “Uniform Convergence on Subspaces in von Neumann Ergodic Theorem with Discrete Time”, Mat. Zametki, 113:5 (2023), 713–730; Math. Notes, 113:5 (2023), 680–693
Citation in format AMSBIB
\Bibitem{KacPodKha23}
\by A.~G.~Kachurovskii, I.~V.~Podvigin, A.~J.~Khakimbaev
\paper Uniform Convergence on Subspaces in von Neumann Ergodic
Theorem with Discrete Time
\jour Mat. Zametki
\yr 2023
\vol 113
\issue 5
\pages 713--730
\mathnet{http://mi.mathnet.ru/mzm13739}
\crossref{https://doi.org/10.4213/mzm13739}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4602429}
\transl
\jour Math. Notes
\yr 2023
\vol 113
\issue 5
\pages 680--693
\crossref{https://doi.org/10.1134/S0001434623050073}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85163150206}
Linking options:
  • https://www.mathnet.ru/eng/mzm13739
  • https://doi.org/10.4213/mzm13739
  • https://www.mathnet.ru/eng/mzm/v113/i5/p713
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024