Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2011, Volume 202, Issue 8, Pages 1105–1125
DOI: https://doi.org/10.1070/SM2011v202n08ABEH004180
(Mi sm7717)
 

This article is cited in 17 scientific papers (total in 17 papers)

Constants in estimates for the rates of convergence in von Neumann's and Birkhoff's ergodic theorems

A. G. Kachurovskiia, V. V. Sedalishchevb

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
b Novosibirsk State University, Mechanics and Mathematics Department
References:
Abstract: The paper investigates estimates which relate two equivalent phenomena: the power-type rate of convergence in von Neumann's ergodic theorem and the power-type singularity at zero (with the same exponent) exhibited by the spectral measure of the function being averaged with respect to the corresponding dynamical system. The same rate of convergence is also estimated in terms of the rate of decrease of the correlation coefficients. Also, constants are found in analogous estimates for the power-type convergence in Birkhoff's ergodic theorem. All the results have exact analogues for wide-sense stationary stochastic processes.
Bibliography: 15 titles.
Keywords: rates of convergence in ergodic theorems, spectral measures, correlation coefficients, wide-sense stationary processes.
Received: 20.03.2010 and 30.09.2010
Bibliographic databases:
Document Type: Article
UDC: 517.987+519.214
MSC: Primary 28D05, 37A30; Secondary 37A50, 47A35, 60G10
Language: English
Original paper language: Russian
Citation: A. G. Kachurovskii, V. V. Sedalishchev, “Constants in estimates for the rates of convergence in von Neumann's and Birkhoff's ergodic theorems”, Sb. Math., 202:8 (2011), 1105–1125
Citation in format AMSBIB
\Bibitem{KacSed11}
\by A.~G.~Kachurovskii, V.~V.~Sedalishchev
\paper Constants in estimates for the rates of convergence in von Neumann's and Birkhoff's ergodic theorems
\jour Sb. Math.
\yr 2011
\vol 202
\issue 8
\pages 1105--1125
\mathnet{http://mi.mathnet.ru/eng/sm7717}
\crossref{https://doi.org/10.1070/SM2011v202n08ABEH004180}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2866197}
\zmath{https://zbmath.org/?q=an:1241.28010}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2011SbMat.202.1105K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000296354800002}
\elib{https://elibrary.ru/item.asp?id=19066296}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-80054697774}
Linking options:
  • https://www.mathnet.ru/eng/sm7717
  • https://doi.org/10.1070/SM2011v202n08ABEH004180
  • https://www.mathnet.ru/eng/sm/v202/i8/p21
  • This publication is cited in the following 17 articles:
    1. Moacir Aloisio, Silas L. Carvalho, César R. de Oliveira, Edson Souza, “On spectral measures and convergence rates in von Neumann's Ergodic theorem”, Monatsh Math, 203:3 (2024), 543  crossref
    2. A. G. Kachurovskii, I. V. Podvigin, A. J. Khakimbaev, “Uniform Convergence on Subspaces in von Neumann Ergodic Theorem with Discrete Time”, Math. Notes, 113:5 (2023), 680–693  mathnet  crossref  crossref  mathscinet
    3. A. G. Kachurovskii, I. V. Podvigin, V. E. Todikov, “Uniform convergence on subspaces in von Neumann's ergodic theorem with continuous time”, Sib. elektron. matem. izv., 20:1 (2023), 183–206  mathnet  crossref
    4. Ben-Artzi J., Morisse B., “Uniform Convergence in Von Neumann'S Ergodic Theorem in the Absence of a Spectral Gap”, Ergod. Theory Dyn. Syst., 41:6 (2021), PII S0143385720000309, 1601–1611  crossref  mathscinet  isi
    5. A. G. Kachurovskii, M. N. Lapshtaev, A. Zh. Khakimbaev, “Ergodicheskaya teorema fon Neimana i summy Feiera zaryadov na okruzhnosti”, Sib. elektron. matem. izv., 17 (2020), 1313–1321  mathnet  crossref
    6. K. I. Knizhov, I. V. Podvigin, “O skhodimosti integrala Luzina i ego analogov”, Sib. elektron. matem. izv., 16 (2019), 85–95  mathnet  crossref
    7. A. G. Kachurovskii, K. I. Knizhov, “Deviations of Fejer sums and rates of convergence in the von Neumann ergodic theorem”, Dokl. Math., 97:3 (2018), 211–214  mathnet  crossref  crossref  mathscinet  zmath  isi  scopus
    8. A. G. Kachurovskii, I. V. Podvigin, “Fejer sums for periodic measures and the von Neumann ergodic theorem”, Dokl. Math., 98:1 (2018), 344–347  mathnet  crossref  crossref  mathscinet  zmath  isi  scopus
    9. A. G. Kachurovskii, I. V. Podvigin, “Fejer sums and Fourier coefficients of periodic measures”, Dokl. Math., 98:2 (2018), 464–467  mathnet  crossref  crossref  mathscinet  zmath  isi  scopus
    10. A. G. Kachurovskii, I. V. Podvigin, “Estimates of the rate of convergence in the von Neumann and Birkhoff ergodic theorems”, Trans. Moscow Math. Soc., 77 (2016), 1–53  mathnet  crossref  elib
    11. A. G. Kachurovskii, I. V. Podvigin, “Correlations, large deviations, and rates of convergence in ergodic theorems for characteristic functions”, Dokl. Math., 91:2 (2015), 204–207  crossref  crossref  mathscinet  zmath  isi  elib  elib  scopus
    12. V. V. Sedalishchev, “Interrelation between the convergence rates in von Neumann's and Birkhoff's ergodic theorems”, Siberian Math. J., 55:2 (2014), 336–348  mathnet  crossref  mathscinet  isi
    13. A. G. Kachurovskii, I. V. Podvigin, “Rate of convergence in ergodic theorems for the planar periodic Lorentz gas”, Dokl. Math., 89:2 (2014), 139–142  crossref  crossref  mathscinet  zmath  isi  elib  elib  scopus
    14. Kachurovskii A.G., Podvigin I.V., “Rates of convergence in ergodic theorems for certain billiards and Anosov diffeomorphisms”, Dokl. Math., 88:1 (2013), 385–387  crossref  crossref  mathscinet  zmath  isi  elib  elib  scopus
    15. A. G. Kachurovskii, I. V. Podvigin, “Large Deviations and the Rate of Convergence in the Birkhoff Ergodic Theorem”, Math. Notes, 94:4 (2013), 524–531  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    16. A. G. Kachurovskii, V. V. Sedalishchev, “On the Constants in the Estimates of the Rate of Convergence in the Birkhoff Ergodic Theorem”, Math. Notes, 91:4 (2012), 582–587  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    17. V. V. Sedalishchev, “Constants in the estimates of the convergence rate in the Birkhoff ergodic theorem with continuous time”, Siberian Math. J., 53:5 (2012), 882–888  mathnet  crossref  mathscinet  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:1097
    Russian version PDF:447
    English version PDF:30
    References:108
    First page:36
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025