Abstract:
We study the rate of convergence in von Neumann's ergodic theorem. We obtain constants connecting the power rate of convergence of ergodic means and the power singularity at zero of the spectral measure of the corresponding dynamical system (these concepts are equivalent to each other). All the results of the paper have obvious exact analogs for wide-sense stationary stochastic processes.
Citation:
A. G. Kachurovskii, V. V. Sedalishchev, “On the Constants in the Estimates of the Rate of Convergence in von Neumann's Ergodic Theorem”, Mat. Zametki, 87:5 (2010), 756–763; Math. Notes, 87:5 (2010), 720–727
\Bibitem{KacSed10}
\by A.~G.~Kachurovskii, V.~V.~Sedalishchev
\paper On the Constants in the Estimates of the Rate of Convergence in von~Neumann's Ergodic Theorem
\jour Mat. Zametki
\yr 2010
\vol 87
\issue 5
\pages 756--763
\mathnet{http://mi.mathnet.ru/mzm8718}
\crossref{https://doi.org/10.4213/mzm8718}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2766588}
\elib{https://elibrary.ru/item.asp?id=15316090}
\transl
\jour Math. Notes
\yr 2010
\vol 87
\issue 5
\pages 720--727
\crossref{https://doi.org/10.1134/S000143461005010X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000279600700010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77954406935}
Linking options:
https://www.mathnet.ru/eng/mzm8718
https://doi.org/10.4213/mzm8718
https://www.mathnet.ru/eng/mzm/v87/i5/p756
This publication is cited in the following 9 articles:
Moacir Aloisio, Silas L. Carvalho, César R. de Oliveira, Edson Souza, “On spectral measures and convergence rates in von Neumann's Ergodic theorem”, Monatsh Math, 203:3 (2024), 543
A. G. Kachurovskii, I. V. Podvigin, A. J. Khakimbaev, “Uniform Convergence on Subspaces in von Neumann Ergodic
Theorem with Discrete Time”, Math. Notes, 113:5 (2023), 680–693
A. G. Kachurovskii, I. V. Podvigin, V. E. Todikov, “Uniform convergence on subspaces in von Neumann's ergodic theorem with continuous time”, Sib. elektron. matem. izv., 20:1 (2023), 183–206
Ben-Artzi J., Morisse B., “Uniform Convergence in Von Neumann'S Ergodic Theorem in the Absence of a Spectral Gap”, Ergod. Theory Dyn. Syst., 41:6 (2021), PII S0143385720000309, 1601–1611
A. G. Kachurovskii, M. N. Lapshtaev, A. Zh. Khakimbaev, “Ergodicheskaya teorema fon Neimana i summy Feiera zaryadov na okruzhnosti”, Sib. elektron. matem. izv., 17 (2020), 1313–1321
A. G. Kachurovskii, I. V. Podvigin, “Estimates of the rate of convergence in the von Neumann and Birkhoff ergodic theorems”, Trans. Moscow Math. Soc., 77 (2016), 1–53
A. G. Kachurovskii, V. V. Sedalishchev, “Constants in estimates for the rates of convergence in von Neumann's and Birkhoff's ergodic theorems”, Sb. Math., 202:8 (2011), 1105–1125
N. A. Dzhulaǐ, A. G. Kachurovskiǐ, “Constants in the estimates of the rate of convergence in von Neumann's ergodic theorem with continuous time”, Siberian Math. J., 52:5 (2011), 824–835