Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2010, Volume 201, Issue 4, Pages 493–500
DOI: https://doi.org/10.1070/SM2010v201n04ABEH004080
(Mi sm7622)
 

This article is cited in 13 scientific papers (total in 13 papers)

On the rate of convergence in von Neumann's ergodic theorem with continuous time

A. G. Kachurovskiia, A. V. Reshetenkob

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
b Novosibirsk State University
References:
Abstract: The rate of convergence in von Neumann's mean ergodic theorem is studied for continuous time. The condition that the rate of convergence of the ergodic averages be of power-law type is shown to be equivalent to requiring that the spectral measure of the corresponding dynamical system have a power-type singularity at 0. This forces the estimates for the convergence rate in the above ergodic theorem to be necessarily spectral. All the results obtained have obvious exact analogues for wide-sense stationary processes.
Bibliography: 7 titles.
Keywords: von Neumann's mean ergodic theorem; rate of convergence of ergodic averages; spectral measures of a dynamical system; wide-sense stationary stochastic processes.
Received: 19.08.2009
Bibliographic databases:
UDC: 517.987+519.214
MSC: Primary 28D10; Secondary 37A30, 60G10
Language: English
Original paper language: Russian
Citation: A. G. Kachurovskii, A. V. Reshetenko, “On the rate of convergence in von Neumann's ergodic theorem with continuous time”, Sb. Math., 201:4 (2010), 493–500
Citation in format AMSBIB
\Bibitem{KacRes10}
\by A.~G.~Kachurovskii, A.~V.~Reshetenko
\paper On the rate of convergence in von Neumann's ergodic theorem with continuous time
\jour Sb. Math.
\yr 2010
\vol 201
\issue 4
\pages 493--500
\mathnet{http://mi.mathnet.ru//eng/sm7622}
\crossref{https://doi.org/10.1070/SM2010v201n04ABEH004080}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2675340}
\zmath{https://zbmath.org/?q=an:1200.28018}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010SbMat.201..493K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000279452200007}
\elib{https://elibrary.ru/item.asp?id=19066195}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77954787013}
Linking options:
  • https://www.mathnet.ru/eng/sm7622
  • https://doi.org/10.1070/SM2010v201n04ABEH004080
  • https://www.mathnet.ru/eng/sm/v201/i4/p25
  • This publication is cited in the following 13 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024