Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2020, Volume 498, Pages 18–25 (Mi znsl7032)  

This article is cited in 4 scientific papers (total in 4 papers)

I

The maximum pointwise rate of convergence in Birkhoff's ergodic theorem

A. G. Kachurovskiia, I. V. Podviginab, A. A. Svishchevb

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
b Novosibirsk State University
Full-text PDF (157 kB) Citations (4)
References:
Abstract: A criterion for the maximum possible pointwise convergence rate in Birkhoff's ergodic theorem for ergodic semiflows in a Lebesgue space is obtained. It is proved that higher rates of convergence in this theorem are impossible.
Key words and phrases: ergodic semiflow, Birkhoff's ergodic theorem, rates of convergence.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 0314-2019-0005
Received: 31.03.2020
Document Type: Article
UDC: 517.987, 519.216
Language: Russian
Citation: A. G. Kachurovskii, I. V. Podvigin, A. A. Svishchev, “The maximum pointwise rate of convergence in Birkhoff's ergodic theorem”, Representation theory, dynamical systems, combinatorial methods. Part XXXI, Zap. Nauchn. Sem. POMI, 498, POMI, St. Petersburg, 2020, 18–25
Citation in format AMSBIB
\Bibitem{KacPodSvi20}
\by A.~G.~Kachurovskii, I.~V.~Podvigin, A.~A.~Svishchev
\paper The maximum pointwise rate of convergence in Birkhoff's ergodic theorem
\inbook Representation theory, dynamical systems, combinatorial methods. Part~XXXI
\serial Zap. Nauchn. Sem. POMI
\yr 2020
\vol 498
\pages 18--25
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7032}
Linking options:
  • https://www.mathnet.ru/eng/znsl7032
  • https://www.mathnet.ru/eng/znsl/v498/p18
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:177
    Full-text PDF :86
    References:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024