|
|
Publications in Math-Net.Ru |
Citations |
|
2023 |
1. |
A. V. Loboda, R. S. Akopyan, V. V. Krutskikh, “On 7-dimensional algebras of holomorphic vector fields in $ \Bbb C^4 $,
having a 5-dimensional abelian ideal”, Dal'nevost. Mat. Zh., 23:1 (2023), 55–80 |
1
|
2. |
A. V. Loboda, V. K. Kaverina, “About linear homogeneous hypersurfaces in $ \Bbb R^4 $”, Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 1, 51–74 ; Russian Math. (Iz. VUZ), 67:1 (2023), 43–63 |
3. |
A. V. Loboda, “О 7-мерных алгебрах Ли, допускающих Леви-невырожденные орбиты в $\mathbb{C}^4$”, Tr. Mosk. Mat. Obs., 84:2 (2023), 205–230 |
|
2022 |
4. |
A. V. Loboda, V. K. Kaverina, “On degeneracy of orbits of nilpotent Lie algebras”, Ufimsk. Mat. Zh., 14:1 (2022), 57–83 ; Ufa Math. J., 14:1 (2022), 52–76 |
2
|
|
2021 |
5. |
B. M. Darinskii, A. V. Loboda, D. S. Saiko, “On some topological characteristics of harmonic polynomials”, Izv. Vyssh. Uchebn. Zaved. Mat., 2021, no. 5, 23–32 ; Russian Math. (Iz. VUZ), 65:5 (2021), 13–20 |
6. |
A. V. Loboda, B. M. Darinskii, D. V. Kozoriz, “On Harmonic Polynomials Invariant under Unitary Transformations”, Mat. Zametki, 109:6 (2021), 856–871 ; Math. Notes, 109:6 (2021), 896–908 |
|
2020 |
7. |
Alexander V. Loboda, Ripsime S. Akopyan, Vladislav V. Krutskikh, “On the orbits of nilpotent 7-dimensional lie algebras in 4-dimensional complex space”, J. Sib. Fed. Univ. Math. Phys., 13:3 (2020), 360–372 |
7
|
8. |
A. V. Loboda, “Holomorphically homogeneous real hypersurfaces in $ \mathbb{C}^3$”, Tr. Mosk. Mat. Obs., 81:2 (2020), 205–280 ; Trans. Moscow Math. Soc., 81:2 (2020), 169–228 |
6
|
9. |
A. V. Loboda, “On the Problem of Describing Holomorphically Homogeneous Real Hypersurfaces of Four-Dimensional Complex Spaces”, Trudy Mat. Inst. Steklova, 311 (2020), 194–212 ; Proc. Steklov Inst. Math., 311 (2020), 180–198 |
5
|
|
2019 |
10. |
R. S. Akopyan, A. V. Loboda, “On holomorphic realizations of 5-dimensional Lie algebras”, Algebra i Analiz, 31:6 (2019), 1–37 ; St. Petersburg Math. J., 31:6 (2020), 911–937 |
2
|
11. |
R. S. Akopyan, A. V. Loboda, “On Holomorphic Realizations of Nilpotent Lie Algebras”, Funktsional. Anal. i Prilozhen., 53:2 (2019), 59–63 |
6
|
12. |
A. V. Atanov, A. V. Loboda, “Decomposable five-dimensional Lie algebras in the problem of holomorphic homogeneity in $\mathbb{C}^3$”, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 173 (2019), 86–115 |
6
|
13. |
A. V. Atanov, A. V. Loboda, “On the orbits of one non-solvable 5-dimensional Lie algebra”, Mathematical Physics and Computer Simulation, 22:2 (2019), 5–20 |
4
|
|
2017 |
14. |
A. V. Atanov, A. V. Loboda, V. I. Sukovykh, “On Holomorphic Homogeneity of Real Hypersurfaces of General Position in $\mathbb C^3$”, Trudy Mat. Inst. Steklova, 298 (2017), 20–41 ; Proc. Steklov Inst. Math., 298 (2017), 13–34 |
2
|
15. |
A. V. Loboda, A. V. Shipovskaya, “On Affine Homogeneous Real Hypersurfaces of General position in $\Bbb C^3$”, Mathematical Physics and Computer Simulation, 20:3 (2017), 111–135 |
|
2015 |
16. |
A. V. Loboda, A. V. Shipovskaya, “On complete list of affinely homogeneous surfaces of ($\varepsilon,0$)-types in the space $\mathbb C^3$”, Izv. Vyssh. Uchebn. Zaved. Mat., 2015, no. 6, 75–81 ; Russian Math. (Iz. VUZ), 59:6 (2015), 62–67 |
17. |
A. V. Atanov, A. V. Loboda, “Affine-Homogeneous Surfaces of Type $(0,0)$ in the Space $\mathbb C^3$”, Mat. Zametki, 97:2 (2015), 309–313 ; Math. Notes, 97:2 (2015), 295–299 |
1
|
|
2014 |
18. |
A. V. Loboda, “On dimensions of affine transformation groups transitively acting
on a real hypersurfaces in $\Bbb C^3$”, Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica, 2014, no. 4(23), 11–35 |
1
|
|
2013 |
19. |
A. V. Loboda, “Affinely Homogeneous Real Hypersurfaces of $\mathbb{C}^2$”, Funktsional. Anal. i Prilozhen., 47:2 (2013), 38–54 ; Funct. Anal. Appl., 47:2 (2013), 113–126 |
20. |
A. V. Loboda, V. K. Evchenko, “Various representations of matrix Lie algebras related to homogeneous surfaces”, Izv. Vyssh. Uchebn. Zaved. Mat., 2013, no. 4, 42–60 ; Russian Math. (Iz. VUZ), 57:4 (2013), 35–51 |
1
|
|
2012 |
21. |
A. V. Loboda, T. T. D. Nguyễn, “On the affine homogeneity of tubular type surfaces in $\mathbb C^3$”, Trudy Mat. Inst. Steklova, 279 (2012), 102–119 ; Proc. Steklov Inst. Math., 279 (2012), 93–109 |
8
|
|
2010 |
22. |
M. S. Danilov, A. V. Loboda, “Affine Homogeneity of Indefinite Real Hypersurfaces in the Space $\mathbb{C}^3$”, Mat. Zametki, 88:6 (2010), 867–884 ; Math. Notes, 88:6 (2010), 827–843 |
6
|
|
2008 |
23. |
A. M. Demin, A. V. Loboda, “An Example of a Two-Parameter Family of Affine Homogeneous Real Hypersurfaces in $\mathbb C^3$”, Mat. Zametki, 84:5 (2008), 791–794 ; Math. Notes, 84:5 (2008), 737–740 |
5
|
|
2007 |
24. |
F. A. Belykh, A. Yu. Borzakov, A. V. Loboda, “Real subalgebras of small dimensions of the matrix lie algebra $M(2,\mathbb C)$”, Izv. Vyssh. Uchebn. Zaved. Mat., 2007, no. 5, 13–24 ; Russian Math. (Iz. VUZ), 51:5 (2007), 11–23 |
3
|
|
2006 |
25. |
A. V. Loboda, “On a Family of Lie Algebras Related to Homogeneous Surfaces”, Trudy Mat. Inst. Steklova, 253 (2006), 111–126 ; Proc. Steklov Inst. Math., 253 (2006), 100–114 |
3
|
|
2003 |
26. |
A. V. Loboda, A. S. Khodarev, “On a family of affine-homogeneous real hypersurfaces of a three-dimensional complex space”, Izv. Vyssh. Uchebn. Zaved. Mat., 2003, no. 10, 38–50 ; Russian Math. (Iz. VUZ), 47:10 (2003), 35–47 |
15
|
27. |
A. V. Loboda, “Determination of a Homogeneous Strictly Pseudoconvex Surface from the Coefficients of Its Normal Equation”, Mat. Zametki, 73:3 (2003), 453–456 ; Math. Notes, 73:3 (2003), 419–423 |
24
|
|
2002 |
28. |
A. V. Loboda, “Homogeneous Nondegenerate Hypersurfaces in $\mathbb{C}^3$ with Two-Dimensional Isotropy Groups”, Funktsional. Anal. i Prilozhen., 36:2 (2002), 80–83 ; Funct. Anal. Appl., 36:2 (2002), 151–153 |
2
|
|
2001 |
29. |
R. N. Guzeev, A. V. Loboda, “On normal equations of affinely homogeneous convex surfaces of the space $\mathbb R^3$”, Izv. Vyssh. Uchebn. Zaved. Mat., 2001, no. 3, 25–32 ; Russian Math. (Iz. VUZ), 45:3 (2001), 23–30 |
2
|
30. |
A. V. Loboda, “Homogeneous strictly pseudoconvex hypersurfaces in $\mathbb C^3$ with two-dimensional isotropy groups”, Mat. Sb., 192:12 (2001), 3–24 ; Sb. Math., 192:12 (2001), 1741–1761 |
35
|
31. |
A. V. Loboda, “Each homotopically homogeneous tube in $C^2$ has an affine-homogeneous base”, Sibirsk. Mat. Zh., 42:6 (2001), 1335–1339 ; Siberian Math. J., 42:6 (2001), 1111–1114 |
14
|
32. |
A. V. Loboda, “Homogeneous Real Hypersurfaces in $\mathbb C^3$ with Two-Dimensional Isotropy Groups”, Trudy Mat. Inst. Steklova, 235 (2001), 114–142 ; Proc. Steklov Inst. Math., 235 (2001), 107–135 |
21
|
|
2000 |
33. |
A. V. Loboda, “Local Description of Homogeneous Real Hypersurfaces of the Two-Dimensional Complex Space in Terms of Their Normal Equations”, Funktsional. Anal. i Prilozhen., 34:2 (2000), 33–42 ; Funct. Anal. Appl., 34:2 (2000), 106–113 |
9
|
|
1999 |
34. |
A. V. Loboda, “On the Dimension of a Group Transitively Acting on a Hypersurface in $\mathbb{C}^3$”, Funktsional. Anal. i Prilozhen., 33:1 (1999), 68–71 ; Funct. Anal. Appl., 33:1 (1999), 58–60 |
16
|
35. |
V. V. Ezhov, A. V. Loboda, G. Schmalz, “Canonical form of a fourth-degree polynomial in a normal equation of a real hypersurface in $\mathbb C^3$”, Mat. Zametki, 66:4 (1999), 624–626 ; Math. Notes, 66:4 (1999), 513–515 |
13
|
36. |
A. V. Loboda, “On the determination of an affine-homogeneous saddle surface of the space $\mathbb R^3$ from the coefficients of its normal equation”, Mat. Zametki, 65:5 (1999), 793–797 ; Math. Notes, 65:5 (1999), 668–672 |
5
|
|
1998 |
37. |
R. N. Guzeev, A. V. Loboda, “Holomorphic invariants of logarithmic spirals”, Izv. Vyssh. Uchebn. Zaved. Mat., 1998, no. 2, 16–19 ; Russian Math. (Iz. VUZ), 42:2 (1998), 13–16 |
1
|
38. |
A. V. Loboda, “Different definitions of homogeneity of real hypersurfaces in $\mathbb C^2$”, Mat. Zametki, 64:6 (1998), 881–887 ; Math. Notes, 64:6 (1998), 761–766 |
1
|
|
1997 |
39. |
A. V. Loboda, “Sphericity of rigid hypersurfaces in $\mathbb C^2$”, Mat. Zametki, 62:3 (1997), 391–403 ; Math. Notes, 62:3 (1997), 329–338 |
8
|
|
1996 |
40. |
A. V. Loboda, “Some invariants of tubular hypersurfaces in $\mathbb C^2$”, Mat. Zametki, 59:2 (1996), 211–223 ; Math. Notes, 59:2 (1996), 148–157 |
12
|
|
1995 |
41. |
A. V. Loboda, “Infinitesimal $\operatorname{CR}$-diffeomorphisms of hypersurfaces in $\mathbb C^2$”, Mat. Zametki, 57:6 (1995), 862–874 ; Math. Notes, 57:6 (1995), 606–614 |
|
1993 |
42. |
A. V. Loboda, “The Continuity of Reduction of Hypersurfaces in $\mathbb{C}^2$ to a Normal Form”, Funktsional. Anal. i Prilozhen., 27:4 (1993), 81–84 ; Funct. Anal. Appl., 27:4 (1993), 288–290 |
|
1992 |
43. |
A. V. Loboda, “On normal equations for surfaces containing flat totally real submanifolds”, Mat. Zametki, 52:1 (1992), 76–86 ; Math. Notes, 52:1 (1992), 687–694 |
2
|
|
1990 |
44. |
A. V. Loboda, “Linearizability of holomorphic mappings of generating manifolds of codimension 2 in $\mathbf C^4$”, Izv. Akad. Nauk SSSR Ser. Mat., 54:3 (1990), 632–644 ; Math. USSR-Izv., 36:3 (1991), 655–667 |
1
|
|
1988 |
45. |
A. V. Loboda, “Real-analytic generating manifolds of codimension $2$ in $\mathbf C^4$ and their biholomorphic mappings”, Izv. Akad. Nauk SSSR Ser. Mat., 52:5 (1988), 970–990 ; Math. USSR-Izv., 33:2 (1989), 295–315 |
13
|
|
1983 |
46. |
N. G. Kruzhilin, A. V. Loboda, “Linearization of local automorphisms of pseudoconvex surfaces”, Dokl. Akad. Nauk SSSR, 271:2 (1983), 280–282 ; Dokl. Math., 28 (1983), 70–72 |
9
|
|
1982 |
47. |
A. V. Loboda, “Linearizability of automorphisms of non-spherical surfaces”, Izv. Akad. Nauk SSSR Ser. Mat., 46:4 (1982), 864–880 ; Math. USSR-Izv., 21:1 (1983), 171–186 |
3
|
|
1981 |
48. |
A. V. Loboda, “On local automorphisms of real analytic hypersurfaces”, Izv. Akad. Nauk SSSR Ser. Mat., 45:3 (1981), 620–645 ; Math. USSR-Izv., 18:3 (1982), 537–559 |
18
|
|
|
|
2014 |
49. |
F. G. Avkhadiev, V. A. Botvinnik, S. K. Vodop'yanov, M. Vuorinen, V. M. Gol'dstein, V. V. Goryainov, A. A. Grigor'yan, V. N. Dubinin, I. V. Zhuravlev, V. A. Zorich, V. M. Kesel'man, A. A. Klyachin, V. A. Klyachin, T. G. Latfullin, A. V. Loboda, A. G. Losev, O. Martio, V. I. Pelikh, S. I. Pinchuk, Yu. G. Reshetnyak, A. S. Romanov, A. G. Sergeev, V. G. Tkachev, E. M. Chirka, “Vladimir Mikhailovich Miklyukov (obituary)”, Uspekhi Mat. Nauk, 69:3(417) (2014), 173–176 ; Russian Math. Surveys, 69:3 (2014), 565–568 |
|
Presentations in Math-Net.Ru |
1. |
О невырожденных орбитах в $\mathbb C^4$ 7-мерных алгебр Ли A. V. Loboda
May 28, 2024 12:25
|
2. |
Orbits in $\mathbb C^4 $ of big families of 7-dimensional Lie algebras A. V. Loboda
Seminar "Complex analysis in several variables" (Vitushkin Seminar) April 3, 2024 16:45
|
3. |
Holomorphically homogeneous Levi-nondegenerate hypersurfaces in $\mathbb C^4$ A. V. Loboda
Seminar "Complex analysis in several variables" (Vitushkin Seminar) November 29, 2023 16:45
|
4. |
О задаче описания однородных вещественных гиперповерхностей комплексных пространств A. V. Loboda
Conference on Complex Analysis and its Applications September 11, 2023 17:00
|
5. |
Orbits of 7-dimensional Lie algebras in $\mathbb C^4$ A. V. Loboda
Seminar "Complex analysis in several variables" (Vitushkin Seminar) March 1, 2023 16:45
|
6. |
Problem of description of homogeneous hypersurfaces of 4-dimensional spaces A. V. Loboda
Seminar "Complex analysis in several variables" (Vitushkin Seminar) April 20, 2022 17:00
|
7. |
On holomorphically homogeneous hypersurfaces in $ \mathbb C^4 $ A. V. Loboda
Multidimensional Residues and Tropical Geometry June 17, 2021 14:30
|
8. |
Nondegenerate nonspherical orbits in $\mathbb C ^ 4$ of nilpotent 7-dimensional Lie algebras A. V. Loboda
Seminar "Complex analysis in several variables" (Vitushkin Seminar) April 7, 2021 16:45
|
9. |
Complete classification of locally homogeneous real hypersurfaces in $\mathbb{C}^3$ A. V. Loboda
Seminar "Complex analysis in several variables" (Vitushkin Seminar) September 23, 2020 16:45
|
10. |
The problem of describing holomorphically homogeneous real hypersurfaces in $\Bbb C^3$ A. V. Loboda
Iskovskikh Seminar October 10, 2019 18:00
|
11. |
Holomorphic realizations of 5-dimensional Lie algebras and the classification of homogeneous real hypersurfaces in $\mathbb C^3$ A. V. Loboda
Lie groups and invariant theory October 9, 2019 16:45
|
12. |
Homogeneous real hypersurfaces in $\mathbb C^3$: completion of classification A. V. Loboda
The 27th International Conference on Finite and Infinite Dimensional Complex Analysis and Applications August 15, 2019 15:00
|
13. |
Classification of 5-dimensional Lie algebras and holomorphically homogeneous real hypersurfaces in $\mathbb C^3$ A. V. Loboda
Seminar "Complex analysis in several variables" (Vitushkin Seminar) April 10, 2019 16:45
|
14. |
On holomorphic realizations of 5-dimensional Lie algebras A. V. Loboda
International Conference on Complex Analysis Dedicated to the memory of Andrei Gonchar and Anatoliy Vitushkin October 9, 2018 14:30
|
15. |
Special seminar dedicated to Vitushkin's memory V. K. Beloshapka, A. V. Loboda
Seminar "Complex analysis in several variables" (Vitushkin Seminar) October 8, 2014 16:45
|
16. |
On the coefficients description for affine-homogeneous real hypersurfaces of the three-dimensional complex space Aleksandr Loboda
Russian–German conference on Several Complex Variables February 28, 2012 16:40
|
17. |
Affine homogeneous real hypersurfaces in $\mathbb C^2$ and $\mathbb C^3$ A. V. Loboda
Lie groups and invariant theory March 2, 2011 16:45
|
|
|
Organisations |
|
|
|
|