Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2001, Volume 235, Pages 114–142 (Mi tm239)  

This article is cited in 21 scientific papers (total in 21 papers)

Homogeneous Real Hypersurfaces in C3C3 with Two-Dimensional Isotropy Groups

A. V. Loboda
References:
Abstract: A local classification is constructed for real nonumbilic hypersurfaces of three-dimensional complex spaces that have sign-indefinite nondegenerate Levi forms and admit seven-dimensional transitive groups of local holomorphic transformations. A full (up to holomorphic equivalence) explicit description of such manifolds is presented. The basic tool used in this paper is the apparatus of local normal forms for the equations of the manifolds considered.
Received in March 2001
Bibliographic databases:
UDC: 517.55
Language: Russian
Citation: A. V. Loboda, “Homogeneous Real Hypersurfaces in C3C3 with Two-Dimensional Isotropy Groups”, Analytic and geometric issues of complex analysis, Collected papers. Dedicated to the 70th anniversary of academician Anatolii Georgievich Vitushkin, Trudy Mat. Inst. Steklova, 235, Nauka, MAIK «Nauka/Inteperiodika», M., 2001, 114–142; Proc. Steklov Inst. Math., 235 (2001), 107–135
Citation in format AMSBIB
\Bibitem{Lob01}
\by A.~V.~Loboda
\paper Homogeneous Real Hypersurfaces in $\mathbb C^3$ with Two-Dimensional Isotropy Groups
\inbook Analytic and geometric issues of complex analysis
\bookinfo Collected papers. Dedicated to the 70th anniversary of academician Anatolii Georgievich Vitushkin
\serial Trudy Mat. Inst. Steklova
\yr 2001
\vol 235
\pages 114--142
\publ Nauka, MAIK «Nauka/Inteperiodika»
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm239}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1886578}
\zmath{https://zbmath.org/?q=an:1023.32025}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2001
\vol 235
\pages 107--135
Linking options:
  • https://www.mathnet.ru/eng/tm239
  • https://www.mathnet.ru/eng/tm/v235/p114
  • This publication is cited in the following 21 articles:
    1. A. V. Loboda, V. K. Kaverina, “About linear homogeneous hypersurfaces in $ \Bbb R^4 $”, Russian Math. (Iz. VUZ), 67:1 (2023), 43–63  mathnet  crossref  crossref
    2. A. V. Atanov, “Orbits of decomposable $7$-dimensional Lie algebras with $\mathfrak{sl}(2)$ subalgebra”, Ufa Math. J., 14:1 (2022), 1–19  mathnet  crossref  mathscinet
    3. A. V. Loboda, “On the Problem of Describing Holomorphically Homogeneous Real Hypersurfaces of Four-Dimensional Complex Spaces”, Proc. Steklov Inst. Math., 311 (2020), 180–198  mathnet  crossref  crossref  mathscinet  isi  elib
    4. Doubrov B., Medvedev A., The D., “Homogeneous Integrable Legendrian Contact Structures in Dimension Five”, J. Geom. Anal., 30:4 (2020), 3806–3858  crossref  mathscinet  isi  scopus
    5. Medvedev A. Schmalz G. Ezhov V., “On the Classification of Homogeneous Affine Tube Domains With Large Automorphism Groups in Arbitrary Dimensions”, Adv. Math., 364 (2020), 107028  crossref  mathscinet  isi
    6. A. V. Loboda, “Holomorphically homogeneous real hypersurfaces in $ \mathbb{C}^3$”, Trans. Moscow Math. Soc., 81:2 (2020), 169–228  mathnet  crossref  elib
    7. R. S. Akopyan, A. V. Loboda, “On holomorphic realizations of 5-dimensional Lie algebras”, St. Petersburg Math. J., 31:6 (2020), 911–937  mathnet  crossref  isi  elib
    8. A. V. Atanov, A. V. Loboda, “Razlozhimye pyatimernye algebry Li v zadache o golomorfnoi odnorodnosti v $\mathbb{C}^3$”, Materialy Voronezhskoi zimnei matematicheskoi shkoly «Sovremennye metody teorii funktsii i smezhnye problemy». 28 yanvarya–2 fevralya 2019 g. Chast 4, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 173, VINITI RAN, M., 2019, 86–115  mathnet  crossref
    9. A. V. Atanov, A. V. Loboda, V. I. Sukovykh, “On Holomorphic Homogeneity of Real Hypersurfaces of General Position in $\mathbb C^3$”, Proc. Steklov Inst. Math., 298 (2017), 13–34  mathnet  crossref  crossref  isi  elib  elib
    10. Merker J., Sabzevari M., “Cartan Equivalence Problem for 5-Dimensional Bracket-Generating CR Manifolds in
      $$\mathbb {C}^4$$
      C 4”, J. Geom. Anal., 26:4 (2016), 3194–3251  crossref  mathscinet  zmath  isi  elib  scopus
    11. T. T. D. Nguen, “Affine-Homogeneous Real Hypersurfaces of Tube Type in $\mathbb{C}^{3}$”, Math. Notes, 94:2 (2013), 238–254  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    12. A. V. Loboda, “Affinely Homogeneous Real Hypersurfaces of $\mathbb{C}^2$”, Funct. Anal. Appl., 47:2 (2013), 113–126  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    13. Beloshapka V.K., Kossovskiy I.G., “Classification of homogeneous CR-manifolds in dimension 4”, J Math Anal Appl, 374:2 (2011), 655–672  crossref  mathscinet  zmath  isi  elib  scopus
    14. Beloshapka V.K., Kossovskiy I.G., “Homogeneous Hypersurfaces in C–3, Associated with a Model CR–Cubic”, Journal of Geometric Analysis, 20:3 (2010), 538–564  crossref  mathscinet  zmath  isi  scopus
    15. M. S. Danilov, A. V. Loboda, “Affine Homogeneity of Indefinite Real Hypersurfaces in the Space $\mathbb{C}^3$”, Math. Notes, 88:6 (2010), 827–843  mathnet  crossref  crossref  mathscinet  isi
    16. A. M. Demin, A. V. Loboda, “An Example of a Two-Parameter Family of Affine Homogeneous Real Hypersurfaces in $\mathbb C^3$”, Math. Notes, 84:5 (2008), 737–740  mathnet  crossref  crossref  mathscinet  isi
    17. Fels G., Kaup W., “Classification of Levi degenerate homogeneous CR–manifolds in dimension 5”, Acta Mathematica, 201:1 (2008), 1–82  crossref  mathscinet  zmath  isi  elib  scopus
    18. I. G. Kossovskii, “On envelopes of holomorphy of model manifolds”, Izv. Math., 71:3 (2007), 545–571  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    19. A. V. Loboda, “On a Family of Lie Algebras Related to Homogeneous Surfaces”, Proc. Steklov Inst. Math., 253 (2006), 100–114  mathnet  crossref  mathscinet  zmath  elib
    20. V. K. Beloshapka, “Symmetries of Real Hypersurfaces in Complex 3-Space”, Math. Notes, 78:2 (2005), 156–163  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:380
    Full-text PDF :174
    References:72
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025