Citation:
A. V. Loboda, “On the Dimension of a Group Transitively Acting on a Hypersurface in C3”, Funktsional. Anal. i Prilozhen., 33:1 (1999), 68–71; Funct. Anal. Appl., 33:1 (1999), 58–60
\Bibitem{Lob99}
\by A.~V.~Loboda
\paper On the Dimension of a Group Transitively Acting on a Hypersurface in $\mathbb{C}^3$
\jour Funktsional. Anal. i Prilozhen.
\yr 1999
\vol 33
\issue 1
\pages 68--71
\mathnet{http://mi.mathnet.ru/faa341}
\crossref{https://doi.org/10.4213/faa341}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1711894}
\zmath{https://zbmath.org/?q=an:0946.32013}
\transl
\jour Funct. Anal. Appl.
\yr 1999
\vol 33
\issue 1
\pages 58--60
\crossref{https://doi.org/10.1007/BF02465145}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000081874700008}
Linking options:
https://www.mathnet.ru/eng/faa341
https://doi.org/10.4213/faa341
https://www.mathnet.ru/eng/faa/v33/i1/p68
This publication is cited in the following 16 articles:
A. V. Atanov, A. V. Loboda, “Decomposable Five-Dimensional Lie Algebras in the Problem on Holomorphic Homogeneity in ℂ3”, J Math Sci, 268:1 (2022), 84
A. V. Loboda, B. M. Darinskii, D. V. Kozoriz, “On Harmonic Polynomials Invariant under Unitary Transformations”, Math. Notes, 109:6 (2021), 896–908
A. V. Loboda, “Holomorphically homogeneous real hypersurfaces in C3”, Trans. Moscow Math. Soc., 81:2 (2020), 169–228
A. V. Atanov, A. V. Loboda, “Razlozhimye pyatimernye algebry Li v zadache o golomorfnoi odnorodnosti v C3”, Materialy Voronezhskoi zimnei matematicheskoi shkoly «Sovremennye metody teorii funktsii i smezhnye problemy». 28 yanvarya–2 fevralya 2019 g. Chast 4, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 173, VINITI RAN, M., 2019, 86–115
A. V. Loboda, “O razmernostyakh grupp affinnykh preobrazovanii, tranzitivno deistvuyuschikh
na veschestvennykh giperpoverkhnostyakh v C3”, Vestn. Volgogr. gos. un-ta. Ser. 1, Mat. Fiz., 2014, no. 4(23), 11–35
Beloshapka V.K., “Can a Stabilizer Be Eight-Dimensional?”, Russ. J. Math. Phys., 19:2 (2012), 135–145
Beloshapka V.K., Kossovskiy I.G., “Classification of homogeneous CR-manifolds in dimension 4”, J Math Anal Appl, 374:2 (2011), 655–672
Isaev, AV, “On Chern-Moser normal forms of strongly pseudoconvex hypersurfaces with high-dimensional stability group”, Pacific Journal of Mathematics, 235:2 (2008), 235
A. V. Loboda, “On a Family of Lie Algebras Related to Homogeneous Surfaces”, Proc. Steklov Inst. Math., 253 (2006), 100–114
A. V. Loboda, “Determination of a Homogeneous Strictly Pseudoconvex Surface from the Coefficients of Its Normal Equation”, Math. Notes, 73:3 (2003), 419–423
A. V. Loboda, A. S. Khodarev, “On a family of affine-homogeneous real hypersurfaces of a three-dimensional complex space”, Russian Math. (Iz. VUZ), 47:10 (2003), 35–47
Loboda, AV, “Three-dimensional real Lie subalgebras of the matrix algebra M (2, C)”, Russian Journal of Mathematical Physics, 10:4 (2003), 495
A. V. Loboda, “Homogeneous Nondegenerate Hypersurfaces in C3 with Two-Dimensional Isotropy Groups”, Funct. Anal. Appl., 36:2 (2002), 151–153
A. V. Loboda, “Homogeneous strictly pseudoconvex hypersurfaces in C3 with two-dimensional isotropy groups”, Sb. Math., 192:12 (2001), 1741–1761
A. V. Loboda, “Homogeneous Real Hypersurfaces in C3 with Two-Dimensional Isotropy Groups”, Proc. Steklov Inst. Math., 235 (2001), 107–135