Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2012, Volume 279, Pages 102–119 (Mi tm3427)  

This article is cited in 8 scientific papers (total in 8 papers)

On the affine homogeneity of tubular type surfaces in $\mathbb C^3$

A. V. Loboda, T. T. D. Nguyễn

Voronezh State University of Architecture and Civil Engineering, Voronezh, Russia
Full-text PDF (231 kB) Citations (8)
References:
Abstract: We present a systematic approach to solving the problem of affine homogeneity of real hypersurfaces in the three-dimensional complex space. This question is an important part of the general problem of holomorphic classification of homogeneous real hypersurfaces in three-dimensional complex spaces. In contrast to the two-dimensional case, the whole problem (just as its affine part) has not yet been fully studied, although there exist a large number of examples of homogeneous manifolds. We study only the class of tubular type surfaces, which is defined by conditions imposed on the $2$-jet of their canonical equations and generalizes the class of tube manifolds. We discuss the procedure of describing all matrix Lie algebras corresponding to the homogeneous manifolds under consideration. In the class that we study, we distinguish four cases depending on the third-order Taylor coefficients of the canonical equations; in three of these cases, the Lie algebras and the corresponding affine homogeneous surfaces are completely described. The key point of the proposed approach is the solution of a large system of quadratic equations that corresponds to each of the homogeneous surfaces.
Received in April 2012
English version:
Proceedings of the Steklov Institute of Mathematics, 2012, Volume 279, Pages 93–109
DOI: https://doi.org/10.1134/S0081543812080093
Bibliographic databases:
Document Type: Article
UDC: 517.55
Language: Russian
Citation: A. V. Loboda, T. T. D. Nguyẽn, “On the affine homogeneity of tubular type surfaces in $\mathbb C^3$”, Analytic and geometric issues of complex analysis, Collected papers, Trudy Mat. Inst. Steklova, 279, MAIK Nauka/Interperiodica, Moscow, 2012, 102–119; Proc. Steklov Inst. Math., 279 (2012), 93–109
Citation in format AMSBIB
\Bibitem{LobNgu12}
\by A.~V.~Loboda, T.~T.~D.~Nguy{\~e}n
\paper On the affine homogeneity of tubular type surfaces in $\mathbb C^3$
\inbook Analytic and geometric issues of complex analysis
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2012
\vol 279
\pages 102--119
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3427}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3086761}
\elib{https://elibrary.ru/item.asp?id=18447443}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2012
\vol 279
\pages 93--109
\crossref{https://doi.org/10.1134/S0081543812080093}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000314063000009}
\elib{https://elibrary.ru/item.asp?id=30572746}
Linking options:
  • https://www.mathnet.ru/eng/tm3427
  • https://www.mathnet.ru/eng/tm/v279/p102
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024