Citation:
A. V. Loboda, “On the determination of an affine-homogeneous saddle surface of the space R3 from the coefficients of its normal equation”, Mat. Zametki, 65:5 (1999), 793–797; Math. Notes, 65:5 (1999), 668–672
\Bibitem{Lob99}
\by A.~V.~Loboda
\paper On the determination of an affine-homogeneous saddle surface of the space $\mathbb R^3$ from the coefficients of its normal equation
\jour Mat. Zametki
\yr 1999
\vol 65
\issue 5
\pages 793--797
\mathnet{http://mi.mathnet.ru/mzm1113}
\crossref{https://doi.org/10.4213/mzm1113}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1716249}
\zmath{https://zbmath.org/?q=an:0976.53012}
\transl
\jour Math. Notes
\yr 1999
\vol 65
\issue 5
\pages 668--672
\crossref{https://doi.org/10.1007/BF02743180}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000083786600019}
Linking options:
https://www.mathnet.ru/eng/mzm1113
https://doi.org/10.4213/mzm1113
https://www.mathnet.ru/eng/mzm/v65/i5/p793
This publication is cited in the following 5 articles:
M. S. Danilov, A. V. Loboda, “Affine Homogeneity of Indefinite Real Hypersurfaces in the Space C3”, Math. Notes, 88:6 (2010), 827–843
Proc. Steklov Inst. Math., 235 (2001), 49–63
A. V. Loboda, “Homogeneous Real Hypersurfaces in C3 with Two-Dimensional Isotropy Groups”, Proc. Steklov Inst. Math., 235 (2001), 107–135
A. V. Loboda, “Homogeneous strictly pseudoconvex hypersurfaces in C3 with two-dimensional isotropy groups”, Sb. Math., 192:12 (2001), 1741–1761
Binder T., Simon U., “Progress in Affine Differential Geometry - Problem List and Continued Bibliography”, Geometry and Topology of Submanifolds X: Differential Geometry in Honor of Prof S.S. Chern, eds. Chen W., Wang C., Li A., Simon U., Wiehe M., Verstraelen L., World Scientific Publ Co Pte Ltd, 2000, 1–17