Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2001, Volume 192, Issue 12, Pages 1741–1761
DOI: https://doi.org/10.1070/SM2001v192n12ABEH000614
(Mi sm614)
 

This article is cited in 35 scientific papers (total in 35 papers)

Homogeneous strictly pseudoconvex hypersurfaces in $\mathbb C^3$ with two-dimensional isotropy groups

A. V. Loboda

Voronezh State Academy of Building and Architecture
References:
Abstract: Strictly pseudoconvex non-spherical hypersurfaces in 3-dimensional complex space that are homogeneous with respect to local Lie groups of holomorphic transformations are studied. The author proved earlier that a Lie group $\operatorname{Aut}M$ acting transitively on such a manifold $M$ has dimension at most 7.
A complete list of homogeneous surfaces such that $\operatorname{Aut}M$ has dimension precisely 7 (and the corresponding isotropy subgroup has dimension precisely 2) is given. The main tools used in the paper are local normal equations describing the manifolds under consideration.
Received: 25.01.2001
Russian version:
Matematicheskii Sbornik, 2001, Volume 192, Number 12, Pages 3–24
DOI: https://doi.org/10.4213/sm614
Bibliographic databases:
UDC: 517.5
MSC: Primary 32V40, 53C30; Secondary 32M25
Language: English
Original paper language: Russian
Citation: A. V. Loboda, “Homogeneous strictly pseudoconvex hypersurfaces in $\mathbb C^3$ with two-dimensional isotropy groups”, Mat. Sb., 192:12 (2001), 3–24; Sb. Math., 192:12 (2001), 1741–1761
Citation in format AMSBIB
\Bibitem{Lob01}
\by A.~V.~Loboda
\paper Homogeneous strictly pseudoconvex hypersurfaces in~$\mathbb C^3$ with two-dimensional isotropy groups
\jour Mat. Sb.
\yr 2001
\vol 192
\issue 12
\pages 3--24
\mathnet{http://mi.mathnet.ru/sm614}
\crossref{https://doi.org/10.4213/sm614}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1885911}
\zmath{https://zbmath.org/?q=an:1029.32021}
\transl
\jour Sb. Math.
\yr 2001
\vol 192
\issue 12
\pages 1741--1761
\crossref{https://doi.org/10.1070/SM2001v192n12ABEH000614}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000174857300008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0035528651}
Linking options:
  • https://www.mathnet.ru/eng/sm614
  • https://doi.org/10.1070/SM2001v192n12ABEH000614
  • https://www.mathnet.ru/eng/sm/v192/i12/p3
  • This publication is cited in the following 35 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:607
    Russian version PDF:290
    English version PDF:14
    References:48
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024