Abstract:
We discuss two fragments of a large problem that extends the author's recently completed similar studies in the space $\mathbb C^3$ to the next dimension. One of the fragments is related to the local description of nonspherical holomorphically homogeneous strictly pseudoconvex hypersurfaces in $\mathbb C^4$ with stabilizers of submaximal dimension. Using the Moser normal form technique and the properties of subgroups of the unitary group $\mathrm U(3)$, we show that up to holomorphic equivalence there exist only two such surfaces. Both of them are natural generalizations of known homogeneous hypersurfaces in the space $\mathbb C^3$. In the second part of the paper, we consider a technique of holomorphic realization in $\mathbb C^4$ of abstract seven-dimensional Lie algebras that correspond, in particular, to homogeneous hypersurfaces with trivial stabilizer. Some sufficient conditions for the Lie algebras are obtained under which the orbits of all realizations of such algebras are Levi degenerate. The schemes of studying holomorphically homogeneous hypersurfaces that were used in the two-dimensional (É. Cartan) and three-dimensional (Doubrov, Medvedev, and The; Fels and Kaup; Beloshapka and Kossovskiy; Loboda) situations and resulted in full descriptions of such hyperdurfaces turn out to be quite efficient in the case of greater dimension of the ambient space as well.
Keywords:
homogeneous manifold, real hypersurface, normal form, holomorphic transformation, vector field, Lie algebra, unitary group.
Citation:
A. V. Loboda, “On the Problem of Describing Holomorphically Homogeneous Real Hypersurfaces of Four-Dimensional Complex Spaces”, Analysis and mathematical physics, Collected papers. On the occasion of the 70th birthday of Professor Armen Glebovich Sergeev, Trudy Mat. Inst. Steklova, 311, Steklov Math. Inst., Moscow, 2020, 194–212; Proc. Steklov Inst. Math., 311 (2020), 180–198
\Bibitem{Lob20}
\by A.~V.~Loboda
\paper On the Problem of Describing Holomorphically Homogeneous Real Hypersurfaces of Four-Dimensional Complex Spaces
\inbook Analysis and mathematical physics
\bookinfo Collected papers. On the occasion of the 70th birthday of Professor Armen Glebovich Sergeev
\serial Trudy Mat. Inst. Steklova
\yr 2020
\vol 311
\pages 194--212
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4122}
\crossref{https://doi.org/10.4213/tm4122}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4223989}
\elib{https://elibrary.ru/item.asp?id=44959537}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2020
\vol 311
\pages 180--198
\crossref{https://doi.org/10.1134/S0081543820060115}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000614212700011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85100354829}
Linking options:
https://www.mathnet.ru/eng/tm4122
https://doi.org/10.4213/tm4122
https://www.mathnet.ru/eng/tm/v311/p194
This publication is cited in the following 7 articles:
Boris Kruglikov, Andrea Santi, “On 3-nondegenerate CR manifolds in dimension 7 (I): The transitive case”, Journal für die reine und angewandte Mathematik (Crelles Journal), 2025
A. V. Atanov, A. V. Loboda, “O nevyrozhdennykh orbitakh $7$-mernykh algebr Li, soderzhaschikh $3$-mernyi abelev ideal”, Trudy Voronezhskoi zimnei matematicheskoi shkoly S. G. Kreina — 2024, SMFN, 70, no. 4, Rossiiskii universitet druzhby narodov, M., 2024, 517–532
A. V. Loboda, R. S. Akopyan, V. V. Krutskikh, “O 7-mernykh algebrakh golomorfnykh vektornykh polei v $\Bbb C^4$, imeyuschikh 5-mernyi abelev ideal”, Dalnevost. matem. zhurn., 23:1 (2023), 55–80
A. V. Loboda, “O 7-mernykh algebrakh Li, dopuskayuschikh Levi-nevyrozhdennye orbity v $\mathbb{C}^4$”, Tr. MMO, 84, no. 2, MTsNMO, M., 2023, 205–230
A. V. Loboda, “On the tubular structure of holomorphically homogeneous real hypersurfaces in $\mathbb{C}^4$”, Lobachevskii J. Math., 44:4 (2023), 1373
A. V. Atanov, A. V. Loboda, “On degenerate orbits of real Lie algebras in multidimensional complex spaces”, Russ. J. Math. Phys., 30:4 (2023), 432
A. V. Loboda, V. K. Kaverina, “On degeneracy of orbits of nilpotent Lie algebras”, Ufa Math. J., 14:1 (2022), 52–76