Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2020, Volume 311, Pages 194–212
DOI: https://doi.org/10.4213/tm4122
(Mi tm4122)
 

This article is cited in 5 scientific papers (total in 5 papers)

On the Problem of Describing Holomorphically Homogeneous Real Hypersurfaces of Four-Dimensional Complex Spaces

A. V. Lobodaab

a Voronezh State Technical University, ul. 20-letiya Oktyabrya 84, Voronezh, 394006 Russia
b Voronezh State University, Universitetskaya pl. 1, Voronezh, 394018 Russia
Full-text PDF (269 kB) Citations (5)
References:
Abstract: We discuss two fragments of a large problem that extends the author's recently completed similar studies in the space $\mathbb C^3$ to the next dimension. One of the fragments is related to the local description of nonspherical holomorphically homogeneous strictly pseudoconvex hypersurfaces in $\mathbb C^4$ with stabilizers of submaximal dimension. Using the Moser normal form technique and the properties of subgroups of the unitary group $\mathrm U(3)$, we show that up to holomorphic equivalence there exist only two such surfaces. Both of them are natural generalizations of known homogeneous hypersurfaces in the space $\mathbb C^3$. In the second part of the paper, we consider a technique of holomorphic realization in $\mathbb C^4$ of abstract seven-dimensional Lie algebras that correspond, in particular, to homogeneous hypersurfaces with trivial stabilizer. Some sufficient conditions for the Lie algebras are obtained under which the orbits of all realizations of such algebras are Levi degenerate. The schemes of studying holomorphically homogeneous hypersurfaces that were used in the two-dimensional (É. Cartan) and three-dimensional (Doubrov, Medvedev, and The; Fels and Kaup; Beloshapka and Kossovskiy; Loboda) situations and resulted in full descriptions of such hyperdurfaces turn out to be quite efficient in the case of greater dimension of the ambient space as well.
Keywords: homogeneous manifold, real hypersurface, normal form, holomorphic transformation, vector field, Lie algebra, unitary group.
Funding agency Grant number
Russian Foundation for Basic Research 17-01-00592
20-01-00497
This work was supported by the Russian Foundation for Basic Research, project nos. 17-01-00592 and 20-01-00497.
Received: April 13, 2020
Revised: May 8, 2020
Accepted: June 21, 2020
English version:
Proceedings of the Steklov Institute of Mathematics, 2020, Volume 311, Pages 180–198
DOI: https://doi.org/10.1134/S0081543820060115
Bibliographic databases:
Document Type: Article
UDC: 517.55+515.172.2+512.816
Language: Russian
Citation: A. V. Loboda, “On the Problem of Describing Holomorphically Homogeneous Real Hypersurfaces of Four-Dimensional Complex Spaces”, Analysis and mathematical physics, Collected papers. On the occasion of the 70th birthday of Professor Armen Glebovich Sergeev, Trudy Mat. Inst. Steklova, 311, Steklov Math. Inst., Moscow, 2020, 194–212; Proc. Steklov Inst. Math., 311 (2020), 180–198
Citation in format AMSBIB
\Bibitem{Lob20}
\by A.~V.~Loboda
\paper On the Problem of Describing Holomorphically Homogeneous Real Hypersurfaces of Four-Dimensional Complex Spaces
\inbook Analysis and mathematical physics
\bookinfo Collected papers. On the occasion of the 70th birthday of Professor Armen Glebovich Sergeev
\serial Trudy Mat. Inst. Steklova
\yr 2020
\vol 311
\pages 194--212
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4122}
\crossref{https://doi.org/10.4213/tm4122}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4223989}
\elib{https://elibrary.ru/item.asp?id=44959537}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2020
\vol 311
\pages 180--198
\crossref{https://doi.org/10.1134/S0081543820060115}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000614212700011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85100354829}
Linking options:
  • https://www.mathnet.ru/eng/tm4122
  • https://doi.org/10.4213/tm4122
  • https://www.mathnet.ru/eng/tm/v311/p194
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:244
    Full-text PDF :56
    References:32
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024