Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Pereskokov, Alexandr Vadimovich

Statistics Math-Net.Ru
Total publications: 22
Scientific articles: 22
Presentations: 1

Number of views:
This page:1207
Abstract pages:8872
Full texts:2916
References:1254
E-mail:

https://www.mathnet.ru/eng/person11245
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/219146

Publications in Math-Net.Ru Citations
2021
1. A. V. Pereskokov, “Asymptotics of the spectrum of a Hartree-type operator with a screened Coulomb self-action potential near the upper boundaries of spectral clusters”, TMF, 209:3 (2021),  543–560  mathnet  elib; Theoret. and Math. Phys., 209:3 (2021), 1782–1797  isi  scopus 1
2020
2. A. S. Migaeva, A. V. Pereskokov, “Asymptotics of the Spectrum of the Hydrogen Atom in Orthogonal Electric and Magnetic Fields near the Lower Boundaries of Spectral Clusters”, Mat. Zametki, 107:5 (2020),  734–751  mathnet  mathscinet  elib; Math. Notes, 107:5 (2020), 804–819  isi  scopus 2
3. A. V. Pereskokov, “Semiclassical asymptotic spectrum of the two-dimensional Hartree operator near a local maximum of the eigenvalues in a spectral cluste”, TMF, 205:3 (2020),  467–483  mathnet  elib; Theoret. and Math. Phys., 205:3 (2020), 1652–1665  isi  scopus 2
2019
4. D. A. Vakhrameeva, A. V. Pereskokov, “Asymptotics of the spectrum of a two-dimensional Hartree-type operator with a Coulomb self-action potential near the lower boundaries of spectral clusters”, TMF, 199:3 (2019),  445–459  mathnet  mathscinet  elib; Theoret. and Math. Phys., 199:3 (2019), 864–877  isi  scopus 3
2017
5. A. V. Pereskokov, “Semiclassical Asymptotics of the Spectrum near the Lower Boundary of Spectral Clusters for a Hartree-Type Operator”, Mat. Zametki, 101:6 (2017),  894–910  mathnet  mathscinet  elib; Math. Notes, 101:6 (2017), 1009–1022  isi  scopus 7
2016
6. A. V. Pereskokov, “Semiclassical asymptotic approximation of the two-dimensional Hartree operator spectrum near the upper boundaries of spectral clusters”, TMF, 187:1 (2016),  74–87  mathnet  mathscinet  elib; Theoret. and Math. Phys., 187:1 (2016), 511–524  isi  scopus 9
2015
7. A. V. Pereskokov, “Asymptotics of the Hartree operator spectrum near the upper boundaries of spectral clusters: Asymptotic solutions localized near a circle”, TMF, 183:1 (2015),  78–89  mathnet  mathscinet  elib; Theoret. and Math. Phys., 183:1 (2015), 516–526  isi  scopus 8
2014
8. A. V. Pereskokov, “Semiclassical asymptotic spectrum of a Hartree-type operator near the upper boundary of spectral clusters”, TMF, 178:1 (2014),  88–106  mathnet  mathscinet  zmath  elib; Theoret. and Math. Phys., 178:1 (2014), 76–92  isi  elib  scopus 12
2013
9. A. V. Pereskokov, “Asymptotics of the spectrum and quantum averages of a perturbed resonant oscillator near the boundaries of spectral clusters”, Izv. RAN. Ser. Mat., 77:1 (2013),  165–210  mathnet  mathscinet  zmath  elib; Izv. Math., 77:1 (2013), 163–210  isi  elib  scopus 10
2012
10. A. V. Pereskokov, “Asymptotics of the spectrum of the hydrogen atom in a magnetic field near the lower boundaries of spectral clusters”, Tr. Mosk. Mat. Obs., 73:2 (2012),  277–325  mathnet  mathscinet  zmath  elib; Trans. Moscow Math. Soc., 73 (2012), 221–262  scopus 6
11. A. V. Pereskokov, “Asymptotics of the Spectrum and Quantum Averages near the Boundaries of Spectral Clusters for Perturbed Two-Dimensional Oscillators”, Mat. Zametki, 92:4 (2012),  583–596  mathnet  mathscinet  zmath  elib; Math. Notes, 92:4 (2012), 532–543  isi  elib  scopus 7
2003
12. M. V. Karasev, A. V. Pereskokov, “Asymptotic solutions for Hartree equations and logarithmic obstructions for higher corrections of semiclassical approximation”, Trudy Inst. Mat. i Mekh. UrO RAN, 9:1 (2003),  102–106  mathnet  mathscinet  zmath  elib; Proc. Steklov Inst. Math. (Suppl.), 2003no. , suppl. 1, S123–S128
2002
13. A. V. Pereskokov, “Asymptotic Solutions of Two-Dimensional Hartree-Type Equations Localized in the Neighborhood of Line Segments”, TMF, 131:3 (2002),  389–406  mathnet  mathscinet  zmath  elib; Theoret. and Math. Phys., 131:3 (2002), 775–790  isi 7
2001
14. M. V. Karasev, A. V. Pereskokov, “Asymptotic solutions of Hartree equations concentrated near low-dimensional submanifolds. II. Localization in planar discs”, Izv. RAN. Ser. Mat., 65:6 (2001),  57–98  mathnet  mathscinet  zmath; Izv. Math., 65:6 (2001), 1127–1168  scopus 15
15. M. V. Karasev, A. V. Pereskokov, “Asymptotic solutions of Hartree equations concentrated near low-dimensional submanifolds. I. The model with logarithmic singularity”, Izv. RAN. Ser. Mat., 65:5 (2001),  33–72  mathnet  mathscinet  zmath; Izv. Math., 65:5 (2001), 883–921  scopus 15
1995
16. M. V. Karasev, A. V. Pereskokov, “Turning points, phase shifts, and quantization rules in ordinary differential equations with a local rapidly decreasing nonlinearity”, Tr. Mosk. Mat. Obs., 56 (1995),  107–176  mathnet  mathscinet 1
1993
17. M. V. Karasev, A. V. Pereskokov, “On connection formulas for the second Painleve transcendent. Proof of the Miles conjecture, and a quantization rule”, Izv. RAN. Ser. Mat., 57:3 (1993),  92–151  mathnet  mathscinet  zmath; Russian Acad. Sci. Izv. Math., 42:3 (1994), 501–560  isi 4
18. M. V. Karasev, A. V. Pereskokov, “Logarithmic corrections in a quantization rule. The polaron spectrum”, TMF, 97:1 (1993),  78–93  mathnet  mathscinet; Theoret. and Math. Phys., 97:1 (1993), 1160–1170  isi 9
1992
19. M. V. Karasev, A. V. Pereskokov, “One-dimensional equations of a self-consistent field with cubic nonlinearity in quasiclassical approximation”, Mat. Zametki, 52:2 (1992),  66–82  mathnet  mathscinet  zmath; Math. Notes, 52:2 (1992), 801–814  isi 1
1989
20. M. V. Karasev, A. V. Pereskokov, “Quantization rule for self-consistent field equations with local rapidly decreasing nonlinearity”, TMF, 79:2 (1989),  198–208  mathnet  mathscinet; Theoret. and Math. Phys., 79:2 (1989), 479–486  isi 6
1988
21. A. V. Pereskokov, “Quantization rule for the nonlinear Schrödinger equation in an exterior field”, Mat. Zametki, 44:1 (1988),  149–152  mathnet  zmath 3
1985
22. M. V. Karasev, V. P. Maslov, A. V. Pereskokov, “Resonance frequencies of valves in optic media with spatial dispersion”, Dokl. Akad. Nauk SSSR, 281:5 (1985),  1085–1088  mathnet  mathscinet 1

Presentations in Math-Net.Ru
1. Spectrum and asymptotic solutions of equations with resonance leading part and Hartree-type nonlinearity localized near the small-dimensional submanifolds
A. V. Pereskokov
Complex analysis and mathematical physics
November 22, 2016 16:00

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024