Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2020, Volume 205, Number 3, Pages 467–483
DOI: https://doi.org/10.4213/tmf9934
(Mi tmf9934)
 

This article is cited in 2 scientific papers (total in 2 papers)

Semiclassical asymptotic spectrum of the two-dimensional Hartree operator near a local maximum of the eigenvalues in a spectral cluste

A. V. Pereskokovab

a National Research University "Higher School of Economics", Moscow, Russia
b National Research University "Moscow Power Engineering Institute", Moscow, Russia
Full-text PDF (463 kB) Citations (2)
References:
Abstract: We consider the eigenvalue problem for the two-dimensional Hartree operator with a small nonlinearity coefficient. We find the asymptotic eigenvalues and asymptotic eigenfunctions near a local maximum of the eigenvalues in spectral clusters formed near the eigenvalues of the unperturbed operator.
Keywords: spectral cluster, WKB approximation, asymptotic eigenvalue, asymptotic eigenfunction, logarithmic singularity.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation FSWF-2020-0022
This research was performed in the framework of a state task of the Ministry of Education and Science of the Russian Federation (Project No. FSWF-2020-0022).
Received: 13.05.2020
Revised: 31.07.2020
English version:
Theoretical and Mathematical Physics, 2020, Volume 205, Issue 3, Pages 1652–1665
DOI: https://doi.org/10.1134/S0040577920120077
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. V. Pereskokov, “Semiclassical asymptotic spectrum of the two-dimensional Hartree operator near a local maximum of the eigenvalues in a spectral cluste”, TMF, 205:3 (2020), 467–483; Theoret. and Math. Phys., 205:3 (2020), 1652–1665
Citation in format AMSBIB
\Bibitem{Per20}
\by A.~V.~Pereskokov
\paper Semiclassical asymptotic spectrum of the~two-dimensional Hartree operator near a~local maximum of the~eigenvalues in a~spectral cluste
\jour TMF
\yr 2020
\vol 205
\issue 3
\pages 467--483
\mathnet{http://mi.mathnet.ru/tmf9934}
\crossref{https://doi.org/10.4213/tmf9934}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020TMP...205.1652P}
\elib{https://elibrary.ru/item.asp?id=45070524}
\transl
\jour Theoret. and Math. Phys.
\yr 2020
\vol 205
\issue 3
\pages 1652--1665
\crossref{https://doi.org/10.1134/S0040577920120077}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000600891900007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85097908123}
Linking options:
  • https://www.mathnet.ru/eng/tmf9934
  • https://doi.org/10.4213/tmf9934
  • https://www.mathnet.ru/eng/tmf/v205/i3/p467
  • This publication is cited in the following 2 articles:
    1. A. V. Pereskokov, “Asymptotics of the Spectrum of a Hartree Type Operator with Self-Consistent Potential Including the Macdonald Function”, J Math Sci, 279:4 (2024), 508  crossref  mathscinet
    2. E. V. Vybornyi, S. V. Rumyantseva, “Semiclassical Asymptotics of Oscillating Tunneling for a Quadratic Hamiltonian on the Algebra su(1,1)su(1,1)”, Math. Notes, 112:5 (2022), 642–655  mathnet  crossref  crossref  mathscinet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:290
    Full-text PDF :75
    References:45
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025