Abstract:
We consider the eigenvalue problem for the two-dimensional Hartree operator with a small nonlinearity coefficient. We find the asymptotic eigenvalues and asymptotic eigenfunctions near a local maximum of the eigenvalues in spectral clusters formed near the eigenvalues of the unperturbed operator.
This research was performed in the framework of a state task of the Ministry of Education and Science of the Russian
Federation (Project No. FSWF-2020-0022).
Citation:
A. V. Pereskokov, “Semiclassical asymptotic spectrum of the two-dimensional Hartree operator near a local maximum of the eigenvalues in a spectral cluste”, TMF, 205:3 (2020), 467–483; Theoret. and Math. Phys., 205:3 (2020), 1652–1665
\Bibitem{Per20}
\by A.~V.~Pereskokov
\paper Semiclassical asymptotic spectrum of the~two-dimensional Hartree operator near a~local maximum of the~eigenvalues in a~spectral cluste
\jour TMF
\yr 2020
\vol 205
\issue 3
\pages 467--483
\mathnet{http://mi.mathnet.ru/tmf9934}
\crossref{https://doi.org/10.4213/tmf9934}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020TMP...205.1652P}
\elib{https://elibrary.ru/item.asp?id=45070524}
\transl
\jour Theoret. and Math. Phys.
\yr 2020
\vol 205
\issue 3
\pages 1652--1665
\crossref{https://doi.org/10.1134/S0040577920120077}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000600891900007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85097908123}
Linking options:
https://www.mathnet.ru/eng/tmf9934
https://doi.org/10.4213/tmf9934
https://www.mathnet.ru/eng/tmf/v205/i3/p467
This publication is cited in the following 2 articles:
A. V. Pereskokov, “Asymptotics of the Spectrum of a Hartree Type Operator with Self-Consistent Potential Including the Macdonald Function”, J Math Sci, 279:4 (2024), 508
E. V. Vybornyi, S. V. Rumyantseva, “Semiclassical Asymptotics of Oscillating Tunneling for a Quadratic Hamiltonian on the Algebra su(1,1)su(1,1)”, Math. Notes, 112:5 (2022), 642–655