Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1993, Volume 97, Number 1, Pages 78–93 (Mi tmf1725)  

This article is cited in 9 scientific papers (total in 9 papers)

Logarithmic corrections in a quantization rule. The polaron spectrum

M. V. Karaseva, A. V. Pereskokovb

a Moscow State Institute of Electronics and Mathematics
b Moscow Power Engineering Institute (Technical University)
References:
Abstract: A nonlinear integrodifferential equation that arises in polaron theory is considered. The integral nonlinearity is given by a convolution with the Coulomb potential. Radially symmetric solutions are sought. In the semiclassical limit, an equation for the self-consistent potential is found and studied. The potential has a logarithmic singularity at the origin, and also a turning point at 1. The phase shifts at these points are determined. The quantization rule that takes into account the logarithmic corrections gives a simple asymptotic formula for the polaron spectrum. Global semiclassical solutions of the original nonlinear equation are constructed.
Received: 20.11.1992
English version:
Theoretical and Mathematical Physics, 1993, Volume 97, Issue 1, Pages 1160–1170
DOI: https://doi.org/10.1007/BF01014809
Bibliographic databases:
Language: Russian
Citation: M. V. Karasev, A. V. Pereskokov, “Logarithmic corrections in a quantization rule. The polaron spectrum”, TMF, 97:1 (1993), 78–93; Theoret. and Math. Phys., 97:1 (1993), 1160–1170
Citation in format AMSBIB
\Bibitem{KarPer93}
\by M.~V.~Karasev, A.~V.~Pereskokov
\paper Logarithmic corrections in a~quantization rule. The polaron spectrum
\jour TMF
\yr 1993
\vol 97
\issue 1
\pages 78--93
\mathnet{http://mi.mathnet.ru/tmf1725}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1261858}
\transl
\jour Theoret. and Math. Phys.
\yr 1993
\vol 97
\issue 1
\pages 1160--1170
\crossref{https://doi.org/10.1007/BF01014809}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1993NJ90800006}
Linking options:
  • https://www.mathnet.ru/eng/tmf1725
  • https://www.mathnet.ru/eng/tmf/v97/i1/p78
  • This publication is cited in the following 9 articles:
    1. A. V. Pereskokov, “Semiclassical asymptotic spectrum of the two-dimensional Hartree operator near a local maximum of the eigenvalues in a spectral cluste”, Theoret. and Math. Phys., 205:3 (2020), 1652–1665  mathnet  crossref  crossref  adsnasa  isi  elib
    2. Lipskaya A.V., Pereskokov A.V., “Ob asimptoticheskikh resheniyakh uravneniya tipa khartri s potentsialom vzaimodeistviya yukavy, sosredotochennykh v share”, Vestnik Moskovskogo energeticheskogo instituta, 2011, no. 6, 30–38 On asymptotic solutions concentrated in a ball of the hartree-type equation with the yukawa interaction potential  elib
    3. Efremov G.F., Petrov D.A., Maslov A.O., “Fononnoe trenie i provodimost kristallov”, Vestnik nizhegorodskogo universiteta im. N.I. Lobachevskogo, 2011, no. 4-1, 36–42 Phonon damping and crystal conductivity  elib
    4. V. V. Belov, F. N. Litvinets, A. Yu. Trifonov, “Semiclassical spectral series of a Hartree-type operator corresponding to a rest point of the classical Hamilton–Ehrenfest system”, Theoret. and Math. Phys., 150:1 (2007), 21–33  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    5. M. V. Karasev, A. V. Pereskokov, “Asymptotic solutions for Hartree equations and logarithmic obstructions for higher corrections of semiclassical approximation”, Proc. Steklov Inst. Math. (Suppl.), 2003no. , suppl. 1, S123–S128  mathnet  mathscinet  zmath  elib
    6. V. V. Belov, A. Yu. Trifonov, A. V. Shapovalov, “Semiclassical Trajectory-Coherent Approximations of Hartree-Type Equations”, Theoret. and Math. Phys., 130:3 (2002), 391–418  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    7. A. V. Pereskokov, “Asymptotic Solutions of Two-Dimensional Hartree-Type Equations Localized in the Neighborhood of Line Segments”, Theoret. and Math. Phys., 131:3 (2002), 775–790  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    8. M. V. Karasev, A. V. Pereskokov, “Asymptotic solutions of Hartree equations concentrated near low-dimensional submanifolds. I. The model with logarithmic singularity”, Izv. Math., 65:5 (2001), 883–921  mathnet  crossref  crossref  mathscinet  zmath
    9. M. V. Karasev, A. V. Pereskokov, “Asymptotic solutions of Hartree equations concentrated near low-dimensional submanifolds. II. Localization in planar discs”, Izv. Math., 65:6 (2001), 1127–1168  mathnet  crossref  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:437
    Full-text PDF :154
    References:79
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025