Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2001, Volume 65, Issue 6, Pages 1127–1168
DOI: https://doi.org/10.1070/IM2001v065n06ABEH000365
(Mi im365)
 

This article is cited in 15 scientific papers (total in 15 papers)

Asymptotic solutions of Hartree equations concentrated near low-dimensional submanifolds. II. Localization in planar discs

M. V. Karaseva, A. V. Pereskokovb

a Moscow State Institute of Electronics and Mathematics
b Moscow Power Engineering Institute (Technical University)
References:
Abstract: We consider the eigenvalue problem for the three-dimensional Hartree equation in an external field and construct asymptotic (quasi-classical) solutions concentrated near two-dimensional planar discs. The rate of decrease of these solutions along the normal to the disc is determined by the Bogolyubov polaron, and near the edge of the disc it is defined by the Airy analogue of the polaron. To find the related series of eigenvalues, an analogue of the Bohr–Sommerfeld quantization rule is found from which is derived a simpler algebraic equation determining the main terms in the asymptotics of the eigenvalues.
Received: 13.03.1998
Bibliographic databases:
Language: English
Original paper language: Russian
Citation: M. V. Karasev, A. V. Pereskokov, “Asymptotic solutions of Hartree equations concentrated near low-dimensional submanifolds. II. Localization in planar discs”, Izv. Math., 65:6 (2001), 1127–1168
Citation in format AMSBIB
\Bibitem{KarPer01}
\by M.~V.~Karasev, A.~V.~Pereskokov
\paper Asymptotic solutions of Hartree equations concentrated near low-dimensional submanifolds.~II. Localization in planar discs
\jour Izv. Math.
\yr 2001
\vol 65
\issue 6
\pages 1127--1168
\mathnet{http://mi.mathnet.ru//eng/im365}
\crossref{https://doi.org/10.1070/IM2001v065n06ABEH000365}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1892904}
\zmath{https://zbmath.org/?q=an:1020.81017}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33746770465}
Linking options:
  • https://www.mathnet.ru/eng/im365
  • https://doi.org/10.1070/IM2001v065n06ABEH000365
  • https://www.mathnet.ru/eng/im/v65/i6/p57
  • This publication is cited in the following 15 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:564
    Russian version PDF:258
    English version PDF:17
    References:82
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024