Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2014, Volume 178, Number 1, Pages 88–106
DOI: https://doi.org/10.4213/tmf8561
(Mi tmf8561)
 

This article is cited in 12 scientific papers (total in 12 papers)

Semiclassical asymptotic spectrum of a Hartree-type operator near the upper boundary of spectral clusters

A. V. Pereskokovab

a Moscow Power Engineering Institute, Moscow, Russia
b Moscow Institute for Electronics and Mathematics, Higher School of Economics, Moscow, Russia
References:
Abstract: We consider the problem for eigenvalues of a perturbed two-dimensional oscillator in the case of a resonance frequency. The exciting potential is given by a Hartree-type integral operator with a smooth self-action potential. We find asymptotic eigenvalues and asymptotic eigenfunctions near the upper boundary of spectral clusters, which form around energy levels of the nonperturbed operator. To calculate them, we use asymptotic formulas for quantum means.
Keywords: self-consistent field, method of quantum averaging, coherent transformation, WKB approximation, spectral cluster, quantum mean.
Received: 09.06.2013
English version:
Theoretical and Mathematical Physics, 2014, Volume 178, Issue 1, Pages 76–92
DOI: https://doi.org/10.1007/s11232-014-0131-8
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. V. Pereskokov, “Semiclassical asymptotic spectrum of a Hartree-type operator near the upper boundary of spectral clusters”, TMF, 178:1 (2014), 88–106; Theoret. and Math. Phys., 178:1 (2014), 76–92
Citation in format AMSBIB
\Bibitem{Per14}
\by A.~V.~Pereskokov
\paper Semiclassical asymptotic spectrum of a~Hartree-type operator near the~upper boundary of spectral clusters
\jour TMF
\yr 2014
\vol 178
\issue 1
\pages 88--106
\mathnet{http://mi.mathnet.ru/tmf8561}
\crossref{https://doi.org/10.4213/tmf8561}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3302461}
\zmath{https://zbmath.org/?q=an:1298.81093}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014TMP...178...76P}
\elib{https://elibrary.ru/item.asp?id=21277097}
\transl
\jour Theoret. and Math. Phys.
\yr 2014
\vol 178
\issue 1
\pages 76--92
\crossref{https://doi.org/10.1007/s11232-014-0131-8}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000332122900003}
\elib{https://elibrary.ru/item.asp?id=21866739}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84894667940}
Linking options:
  • https://www.mathnet.ru/eng/tmf8561
  • https://doi.org/10.4213/tmf8561
  • https://www.mathnet.ru/eng/tmf/v178/i1/p88
  • This publication is cited in the following 12 articles:
    1. A. A. Fedotov, “Complex WKB Method (One-Dimensional Linear Problems on the Complex Plane)”, Math Notes, 114:5-6 (2023), 1418  crossref
    2. A. V. Pereskokov, “Semiclassical Asymptotics of the Spectrum of a Two-Dimensional Hartree Type Operator Near Boundaries of Spectral Clusters”, J Math Sci, 264:5 (2022), 617  crossref
    3. A. V. Pereskokov, “Asymptotics of the spectrum of a Hartree-type operator with a screened Coulomb self-action potential near the upper boundaries of spectral clusters”, Theoret. and Math. Phys., 209:3 (2021), 1782–1797  mathnet  crossref  crossref  adsnasa  isi  elib
    4. A. V. Pereskokov, “Semiclassical asymptotic spectrum of the two-dimensional Hartree operator near a local maximum of the eigenvalues in a spectral cluste”, Theoret. and Math. Phys., 205:3 (2020), 1652–1665  mathnet  crossref  crossref  adsnasa  isi  elib
    5. D. A. Vakhrameeva, A. V. Pereskokov, “Asymptotics of the Spectrum and Quantum Averages of a Hartree Type Operator Near the Lower Boundaries of Spectral Clusters”, J Math Sci, 247:6 (2020), 820  crossref
    6. D. A. Vakhrameeva, A. V. Pereskokov, “Asymptotics of the spectrum of a two-dimensional Hartree-type operator with a Coulomb self-action potential near the lower boundaries of spectral clusters”, Theoret. and Math. Phys., 199:3 (2019), 864–877  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    7. A. V. Pereskokov, “Semiclassical Asymptotics of the Spectrum near the Lower Boundary of Spectral Clusters for a Hartree-Type Operator”, Math. Notes, 101:6 (2017), 1009–1022  mathnet  crossref  crossref  mathscinet  isi  elib
    8. A. V. Pereskokov, “Semiclassical Asymptotics of Solutions to Hartree Type Equations Concentrated on Segments”, J Math Sci, 226:4 (2017), 462  crossref
    9. A. V. Pereskokov, “Semiclassical asymptotic approximation of the two-dimensional Hartree operator spectrum near the upper boundaries of spectral clusters”, Theoret. and Math. Phys., 187:1 (2016), 511–524  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    10. Pereskokov A., “Asymptotics of the Hartree-type operator spectrum near the lower boundaries of spectral clusters”, Appl. Anal., 95:7, SI (2016), 1560–1569  crossref  mathscinet  zmath  isi  elib  scopus
    11. Alexander V. Pereskokov, 2016 Days on Diffraction (DD), 2016, 323  crossref
    12. A. V. Pereskokov, “Asymptotics of the Hartree operator spectrum near the upper boundaries of spectral clusters: Asymptotic solutions localized near a circle”, Theoret. and Math. Phys., 183:1 (2015), 516–526  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:678
    Full-text PDF :237
    References:108
    First page:30
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025