Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2001, Volume 65, Issue 5, Pages 883–921
DOI: https://doi.org/10.1070/IM2001v065n05ABEH000356
(Mi im356)
 

This article is cited in 15 scientific papers (total in 15 papers)

Asymptotic solutions of Hartree equations concentrated near low-dimensional submanifolds. I. The model with logarithmic singularity

M. V. Karaseva, A. V. Pereskokovb

a Moscow State Institute of Electronics and Mathematics
b Moscow Power Engineering Institute (Technical University)
References:
Abstract: We consider a two-dimensional model Schrödinger equation with logarithmic integral non-linearity. We find asymptotic expansions for its solutions (Airy polarons) that decay exponentially at the “semi-infinity” and oscillate along one direction. These solutions may be regarded as new special functions, which are somewhat similar to the Airy function. We use them to construct global asymptotic solutions of Schrödinger equations with a small parameter and with integral non-linearity of Hartree type.
Received: 13.03.1998
Bibliographic databases:
Language: English
Original paper language: Russian
Citation: M. V. Karasev, A. V. Pereskokov, “Asymptotic solutions of Hartree equations concentrated near low-dimensional submanifolds. I. The model with logarithmic singularity”, Izv. Math., 65:5 (2001), 883–921
Citation in format AMSBIB
\Bibitem{KarPer01}
\by M.~V.~Karasev, A.~V.~Pereskokov
\paper Asymptotic solutions of Hartree equations concentrated near low-dimensional submanifolds.~I. The model with logarithmic singularity
\jour Izv. Math.
\yr 2001
\vol 65
\issue 5
\pages 883--921
\mathnet{http://mi.mathnet.ru//eng/im356}
\crossref{https://doi.org/10.1070/IM2001v065n05ABEH000356}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1874353}
\zmath{https://zbmath.org/?q=an:1019.81018}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33746728524}
Linking options:
  • https://www.mathnet.ru/eng/im356
  • https://doi.org/10.1070/IM2001v065n05ABEH000356
  • https://www.mathnet.ru/eng/im/v65/i5/p33
  • This publication is cited in the following 15 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024