Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2019, Volume 199, Number 3, Pages 445–459
DOI: https://doi.org/10.4213/tmf9664
(Mi tmf9664)
 

This article is cited in 3 scientific papers (total in 3 papers)

Asymptotics of the spectrum of a two-dimensional Hartree-type operator with a Coulomb self-action potential near the lower boundaries of spectral clusters

D. A. Vakhrameevaa, A. V. Pereskokovba

a National Research University Higher School of Economics, Moscow, Russia
b Federal State Budget Educational Institution of Higher Education National Research University Moscow Power Engineering Institute, Moscow, Russia
Full-text PDF (461 kB) Citations (3)
References:
Abstract: We consider the eigenvalue problem for a perturbed two-dimensional oscillator where the perturbation is an integral Hartree-type nonlinearity with a Coulomb self-action potential. We obtain asymptotic eigenvalues and asymptotic eigenfunctions near the lower boundaries of spectral clusters formed in a neighborhood of the eigenvalues of the unperturbed operator and construct an asymptotic expansion near a circle where the solution is localized.
Keywords: self-consistent field, spectral cluster, spectrum splitting, asymptotic eigenvalue, asymptotic eigenfunction.
Funding agency Grant number
National Research University Higher School of Economics
Russian Science Foundation 19-11-00033
The research of D. A. Vakhrameeva is supported by the Program of Fundamental Research of the National Research University Higher School of Economics.
The research of A. V. Pereskokov is supported by a grant from the Russian Science Foundation (Project No. 19-11-00033).
Received: 08.12.2018
Revised: 23.01.2019
English version:
Theoretical and Mathematical Physics, 2019, Volume 199, Issue 3, Pages 864–877
DOI: https://doi.org/10.1134/S0040577919060072
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: D. A. Vakhrameeva, A. V. Pereskokov, “Asymptotics of the spectrum of a two-dimensional Hartree-type operator with a Coulomb self-action potential near the lower boundaries of spectral clusters”, TMF, 199:3 (2019), 445–459; Theoret. and Math. Phys., 199:3 (2019), 864–877
Citation in format AMSBIB
\Bibitem{VakPer19}
\by D.~A.~Vakhrameeva, A.~V.~Pereskokov
\paper Asymptotics of the~spectrum of a~two-dimensional Hartree-type operator with a~Coulomb self-action potential near the~lower boundaries of spectral clusters
\jour TMF
\yr 2019
\vol 199
\issue 3
\pages 445--459
\mathnet{http://mi.mathnet.ru/tmf9664}
\crossref{https://doi.org/10.4213/tmf9664}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3955223}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2019TMP...199..864V}
\elib{https://elibrary.ru/item.asp?id=37652230}
\transl
\jour Theoret. and Math. Phys.
\yr 2019
\vol 199
\issue 3
\pages 864--877
\crossref{https://doi.org/10.1134/S0040577919060072}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000474494400007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85068777029}
Linking options:
  • https://www.mathnet.ru/eng/tmf9664
  • https://doi.org/10.4213/tmf9664
  • https://www.mathnet.ru/eng/tmf/v199/i3/p445
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:430
    Full-text PDF :64
    References:55
    First page:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024