Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Gevorkyan, Gegham Grigor'evich

Academician of National Academy of Sciences of Armenia
Professor
Doctor of physico-mathematical sciences (1992)
E-mail:

https://www.mathnet.ru/eng/person8603
List of publications on Google Scholar
https://mathscinet.ams.org/mathscinet/MRAuthorID/189491

Publications in Math-Net.Ru Citations
2024
1. G. G. Gevorkyan, “On Weyl multipliers for unconditional convergence of series in Ciesielski systems”, Mat. Zametki, 116:5 (2024),  707–713  mathnet; Math. Notes, 116:5 (2024), 969–974
2. G. G. Gevorkyan, “On uniqueness for series in the general Franklin system”, Mat. Sb., 215:3 (2024),  21–36  mathnet  mathscinet  zmath; Sb. Math., 215:3 (2024), 308–322  isi  scopus
2023
3. G. G. Gevorkyan, “On uniqueness for Franklin series with a convergent subsequence of partial sums”, Mat. Sb., 214:2 (2023),  58–71  mathnet  mathscinet  zmath; Sb. Math., 214:2 (2023), 197–209  isi  scopus 2
2022
4. G. G. Gevorkyan, “On the Representation of Measurable Functions by Absolutely Convergent Orthogonal Spline Series”, Trudy Mat. Inst. Steklova, 319 (2022),  73–82  mathnet  mathscinet; Proc. Steklov Inst. Math., 319 (2022), 64–73  scopus 1
2021
5. G. G. Gevorkyan, L. A. Akopyan, “Uniqueness Theorems for Multiple Franklin Series Converging over Rectangles”, Mat. Zametki, 109:2 (2021),  206–218  mathnet  mathscinet; Math. Notes, 109:2 (2021), 208–217  isi  scopus 1
6. G. G. Gevorkyan, “Uniqueness theorems for simple trigonometric series with application to multiple series”, Mat. Sb., 212:12 (2021),  20–39  mathnet  zmath; Sb. Math., 212:12 (2021), 1675–1693  isi  scopus 4
2020
7. G. G. Gevorkyan, “Uniqueness theorems for one-dimensional and double Franklin series”, Izv. RAN. Ser. Mat., 84:5 (2020),  3–19  mathnet  mathscinet  zmath  elib; Izv. Math., 84:5 (2020), 829–844  isi  scopus 3
8. G. G. Gevorkyan, M. G. Grigoryan, “Absolute convergence of the double fourier–franklin series”, Sibirsk. Mat. Zh., 61:3 (2020),  513–527  mathnet  elib; Siberian Math. J., 61:3 (2020), 403–416  isi  scopus 2
2019
9. G. G. Gevorkyan, “On the Convergence of Franklin Series to $+\infty$”, Mat. Zametki, 106:3 (2019),  341–349  mathnet  mathscinet  elib; Math. Notes, 106:3 (2019), 334–341  isi  scopus 7
2018
10. G. G. Gevorkyan, K. A. Navasardyan, “Uniqueness Theorems for Generalized Haar Systems”, Mat. Zametki, 104:1 (2018),  11–24  mathnet  mathscinet  elib; Math. Notes, 104:1 (2018), 10–21  isi  scopus 6
11. G. G. Gevorkyan, “Uniqueness theorems for Franklin series converging to integrable functions”, Mat. Sb., 209:6 (2018),  25–46  mathnet  mathscinet  zmath  elib; Sb. Math., 209:6 (2018), 802–822  isi  scopus 15
12. G. G. Gevorkyan, “Uniqueness theorems for Franklin series”, Trudy Mat. Inst. Steklova, 303 (2018),  67–86  mathnet  mathscinet  elib; Proc. Steklov Inst. Math., 303 (2018), 58–77  isi  scopus 2
2017
13. G. G. Gevorkyan, “Uniqueness Theorem for Multiple Franklin Series”, Mat. Zametki, 101:2 (2017),  199–210  mathnet  mathscinet  elib; Math. Notes, 101:2 (2017), 219–229  isi  scopus 13
14. G. G. Gevorkyan, K. A. Navasardyan, “On a summation method for Vilenkin and generalized Haar systems”, Proceedings of the YSU, Physical and Mathematical Sciences, 51:1 (2017),  13–17  mathnet 1
2016
15. G. G. Gevorkyan, “On the uniqueness of series in the Franklin system”, Mat. Sb., 207:12 (2016),  30–53  mathnet  mathscinet  zmath  elib; Sb. Math., 207:12 (2016), 1650–1673  isi  scopus 14
2015
16. G. G. Gevorkyan, “Uniqueness Theorems for Series in the Franklin System”, Mat. Zametki, 98:5 (2015),  786–789  mathnet  mathscinet  elib; Math. Notes, 98:5 (2015), 847–851  isi  scopus 16
2014
17. G. G. Gevorkyan, “General Franklin system as a basis in $B^1[0,1]$”, Izv. RAN. Ser. Mat., 78:6 (2014),  65–82  mathnet  mathscinet  zmath  elib; Izv. Math., 78:6 (2014), 1120–1137  isi  scopus
2013
18. G. G. Gevorgyan, A. S. Martirosyan, “Majorant and Paley function for series in general Franklin systems”, Trudy Mat. Inst. Steklova, 280 (2013),  138–149  mathnet  mathscinet  elib; Proc. Steklov Inst. Math., 280 (2013), 132–143  isi  elib  scopus 1
2009
19. G. G. Gevorkyan, K. A. Kerian, “On absolute and unconditional convergence of series in the general Franklin system”, Izv. RAN. Ser. Mat., 73:2 (2009),  69–90  mathnet  mathscinet  zmath  elib; Izv. Math., 73:2 (2009), 279–300  isi  scopus 3
1999
20. G. G. Gevorkyan, K. A. Navasardyan, “On Walsh series with monotone coefficients”, Izv. RAN. Ser. Mat., 63:1 (1999),  41–60  mathnet  mathscinet  zmath; Izv. Math., 63:1 (1999), 37–55  isi  scopus 25
1998
21. A. A. Talalyan, G. G. Gevorkyan, G. A. Karagulian, “Some linear summation methods for Fourier series”, Mat. Sb., 189:5 (1998),  129–152  mathnet  mathscinet  zmath; Sb. Math., 189:5 (1998), 771–795  isi  scopus
1996
22. G. G. Gevorkyan, “Majorants and uniqueness of series in the Franklin system”, Mat. Zametki, 59:4 (1996),  521–545  mathnet  mathscinet  zmath; Math. Notes, 59:4 (1996), 373–391  isi 12
1993
23. G. G. Gevorkyan, “On uniqueness of multiple trigonometric series”, Mat. Sb., 184:11 (1993),  93–130  mathnet  mathscinet  zmath; Russian Acad. Sci. Sb. Math., 80:2 (1995), 335–365  isi 9
1992
24. G. G. Gevorkyan, “Trigonometric series summable by means of Riemann's method”, Mat. Zametki, 52:3 (1992),  17–34  mathnet  mathscinet  zmath; Math. Notes, 52:3 (1992), 880–895  isi 4
25. G. G. Gevorkyan, “Uniqueness of multiple trigonometric series”, Mat. Zametki, 52:2 (1992),  148–150  mathnet  mathscinet  zmath; Math. Notes, 52:2 (1992), 859–861  isi 1
1990
26. G. G. Gevorkyan, “Uniqueness of trigonometric series that are summable by the Riemann method”, Dokl. Akad. Nauk SSSR, 313:6 (1990),  1302–1305  mathnet  mathscinet  zmath; Dokl. Math., 42:1 (1991), 154–157 4
1989
27. G. G. Gevorkyan, “Uniqueness of Franklin series”, Mat. Zametki, 46:2 (1989),  51–58  mathnet  mathscinet  zmath; Math. Notes, 46:2 (1989), 609–615  isi 17
28. G. G. Gevorkyan, “Trigonometric integrals that are integrable by the Riemann method”, Mat. Zametki, 45:5 (1989),  114–117  mathnet  mathscinet  zmath 2
29. G. G. Gevorkyan, “Absolute and conditional convergence of series in Franklin systems”, Mat. Zametki, 45:3 (1989),  30–42  mathnet  mathscinet  zmath; Math. Notes, 45:3 (1989), 200–210  isi 3
30. G. G. Gevorkyan, “On the uniqueness of trigonometric series”, Mat. Sb., 180:11 (1989),  1462–1474  mathnet  mathscinet  zmath; Math. USSR-Sb., 68:2 (1991), 325–338  isi 16
31. G. G. Gevorkyan, “Some theorems on unconditional convergence and the majorant of Franklin series and their applications to the spaces $\operatorname{Re}H_p$”, Trudy Mat. Inst. Steklov., 190 (1989),  49–74  mathnet  mathscinet  zmath; Proc. Steklov Inst. Math., 190 (1992), 49–76 7
32. G. G. Gevorkyan, “On the Haar and Franklin series with identical coefficients”, Proceedings of the YSU, Physical and Mathematical Sciences, 1989, no. 3,  3–9  mathnet
1988
33. G. G. Gevorkyan, “Some theorems on unconditional convergence and a majorant of Franklin series, and their application to the spaces $\operatorname{Re}H_p$”, Dokl. Akad. Nauk SSSR, 302:6 (1988),  1292–1295  mathnet  mathscinet  zmath; Dokl. Math., 38:2 (1989), 409–411
1987
34. G. G. Gevorkyan, “Weyl multipliers for the unconditional convergence of series in a Franklin system”, Mat. Zametki, 41:6 (1987),  789–797  mathnet  mathscinet  zmath; Math. Notes, 41:6 (1987), 446–451  isi 3
1985
35. G. G. Gevorkyan, “Unboundedness of the shift operator with respect to the Franklin system in the space $L_1$”, Mat. Zametki, 38:4 (1985),  523–533  mathnet  mathscinet  zmath; Math. Notes, 38:4 (1985), 796–802  isi 5
36. G. G. Gevorkyan, “Sets of relative uniqueness for the Fourier transform and integrals”, Sibirsk. Mat. Zh., 26:5 (1985),  47–61  mathnet  mathscinet  zmath; Siberian Math. J., 26:5 (1985), 665–677  isi
1982
37. G. G. Gevorkyan, “Uniqueness sets for complete orthonormal systems”, Mat. Zametki, 32:5 (1982),  651–656  mathnet  mathscinet  zmath; Math. Notes, 32:5 (1982), 808–811  isi 1

Presentations in Math-Net.Ru
1. Uniqueness theorems for simple trigonometric series and its application to multiple series
G. G. Gevorkyan
International Conference "Approximation Theory and Applications" Dedicated to the 100th Anniversary S. B. Stechkin
September 10, 2021 14:30   

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025