Abstract:
It is proved that if a series in the Franklin system converges almost everywhere to a function f(t) and the distribution function of the majorant of partial sums satisfies the condition
mes{t∈[0,1]:s(t)>λ}=o(1λ)
as λ→∞, then this series is a Fourier series for Lebesgue integrable functions f(t). In the general case the coefficients of the series are reconstructed by means of an A-integral.
Citation:
G. G. Gevorkyan, “Majorants and uniqueness of series in the Franklin system”, Mat. Zametki, 59:4 (1996), 521–545; Math. Notes, 59:4 (1996), 373–391
\Bibitem{Gev96}
\by G.~G.~Gevorkyan
\paper Majorants and uniqueness of series in the Franklin system
\jour Mat. Zametki
\yr 1996
\vol 59
\issue 4
\pages 521--545
\mathnet{http://mi.mathnet.ru/mzm1747}
\crossref{https://doi.org/10.4213/mzm1747}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1445196}
\zmath{https://zbmath.org/?q=an:0877.42012}
\transl
\jour Math. Notes
\yr 1996
\vol 59
\issue 4
\pages 373--391
\crossref{https://doi.org/10.1007/BF02308686}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1996VD93600027}
Linking options:
https://www.mathnet.ru/eng/mzm1747
https://doi.org/10.4213/mzm1747
https://www.mathnet.ru/eng/mzm/v59/i4/p521
This publication is cited in the following 12 articles:
K. A. Keryan, A. L. Khachatryan, “A uniqueness theorem for orthonormal spline series”, Acta Math. Hungar., 2024
G. G. Gevorkyan, K. A. Navasardyan, “On uniqueness of series by general Franklin system”, J. Contemp. Math. Anal., 53:4 (2018), 223–231
K. A. Navasardyan, “On a uniqueness theorem for the Franklin system”, Uch. zapiski EGU, ser. Fizika i Matematika, 52:2 (2018), 93–100
G. G. Gevorkyan, “Uniqueness Theorem for Multiple Franklin Series”, Math. Notes, 101:2 (2017), 219–229
K. A. Navasardyan, “Uniqueness theorems for multiple Franklin series”, Uch. zapiski EGU, ser. Fizika i Matematika, 51:3 (2017), 241–249
Gevorkyan G.G. Poghosyan M.P., “On Recovery of Coefficients of Franklin Series With a “Good” Majorant of Partial Sums”, J. Contemp. Math. Anal.-Armen. Aca., 52:5 (2017), 254–260
G. G. Gevorkyan, K. A. Navasardyan, “On Haar series of $A$-integrable functions”, J. Contemp. Math. Anal., 52:3 (2017), 149–160
G. G. Gevorkyan, “Uniqueness Theorems for Series in the Franklin System”, Math. Notes, 98:5 (2015), 847–851
G. G. Gevorgyan, A. S. Martirosyan, “Majorant and Paley function for series in general Franklin systems”, Proc. Steklov Inst. Math., 280 (2013), 132–143
Keryan K.A., Martirosyan A.S., “A Uniqueness Theorem for Series by Stromberg's System”, J. Contemp. Math. Anal.-Armen. Aca., 47:6 (2012), 278–292
V. V. Kostin, “Generalization of the Balashov Theorem on Subseries of the Fourier–Haar Series”, Math. Notes, 76:5 (2004), 689–696
V. V. Kostin, “Reconstructing Coefficients of Series from Certain Orthogonal Systems of Functions”, Math. Notes, 73:5 (2003), 662–679