Processing math: 100%
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1996, Volume 59, Issue 4, Pages 521–545
DOI: https://doi.org/10.4213/mzm1747
(Mi mzm1747)
 

This article is cited in 12 scientific papers (total in 12 papers)

Majorants and uniqueness of series in the Franklin system

G. G. Gevorkyan

Yerevan State University
References:
Abstract: It is proved that if a series in the Franklin system converges almost everywhere to a function f(t) and the distribution function of the majorant of partial sums satisfies the condition
mes{t[0,1]:s(t)>λ}=o(1λ)
as λ, then this series is a Fourier series for Lebesgue integrable functions f(t). In the general case the coefficients of the series are reconstructed by means of an A-integral.
Received: 05.01.1995
English version:
Mathematical Notes, 1996, Volume 59, Issue 4, Pages 373–391
DOI: https://doi.org/10.1007/BF02308686
Bibliographic databases:
UDC: 517.98
Language: Russian
Citation: G. G. Gevorkyan, “Majorants and uniqueness of series in the Franklin system”, Mat. Zametki, 59:4 (1996), 521–545; Math. Notes, 59:4 (1996), 373–391
Citation in format AMSBIB
\Bibitem{Gev96}
\by G.~G.~Gevorkyan
\paper Majorants and uniqueness of series in the Franklin system
\jour Mat. Zametki
\yr 1996
\vol 59
\issue 4
\pages 521--545
\mathnet{http://mi.mathnet.ru/mzm1747}
\crossref{https://doi.org/10.4213/mzm1747}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1445196}
\zmath{https://zbmath.org/?q=an:0877.42012}
\transl
\jour Math. Notes
\yr 1996
\vol 59
\issue 4
\pages 373--391
\crossref{https://doi.org/10.1007/BF02308686}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1996VD93600027}
Linking options:
  • https://www.mathnet.ru/eng/mzm1747
  • https://doi.org/10.4213/mzm1747
  • https://www.mathnet.ru/eng/mzm/v59/i4/p521
  • This publication is cited in the following 12 articles:
    1. K. A. Keryan, A. L. Khachatryan, “A uniqueness theorem for orthonormal spline series”, Acta Math. Hungar., 2024  crossref
    2. G. G. Gevorkyan, K. A. Navasardyan, “On uniqueness of series by general Franklin system”, J. Contemp. Math. Anal., 53:4 (2018), 223–231  crossref  mathscinet  isi  scopus
    3. K. A. Navasardyan, “On a uniqueness theorem for the Franklin system”, Uch. zapiski EGU, ser. Fizika i Matematika, 52:2 (2018), 93–100  mathnet
    4. G. G. Gevorkyan, “Uniqueness Theorem for Multiple Franklin Series”, Math. Notes, 101:2 (2017), 219–229  mathnet  crossref  crossref  mathscinet  isi  elib
    5. K. A. Navasardyan, “Uniqueness theorems for multiple Franklin series”, Uch. zapiski EGU, ser. Fizika i Matematika, 51:3 (2017), 241–249  mathnet  zmath
    6. Gevorkyan G.G. Poghosyan M.P., “On Recovery of Coefficients of Franklin Series With a “Good” Majorant of Partial Sums”, J. Contemp. Math. Anal.-Armen. Aca., 52:5 (2017), 254–260  crossref  zmath  isi  scopus  scopus
    7. G. G. Gevorkyan, K. A. Navasardyan, “On Haar series of $A$-integrable functions”, J. Contemp. Math. Anal., 52:3 (2017), 149–160  crossref  mathscinet  zmath  isi  elib  scopus
    8. G. G. Gevorkyan, “Uniqueness Theorems for Series in the Franklin System”, Math. Notes, 98:5 (2015), 847–851  mathnet  crossref  crossref  mathscinet  isi  elib
    9. G. G. Gevorgyan, A. S. Martirosyan, “Majorant and Paley function for series in general Franklin systems”, Proc. Steklov Inst. Math., 280 (2013), 132–143  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    10. Keryan K.A., Martirosyan A.S., “A Uniqueness Theorem for Series by Stromberg's System”, J. Contemp. Math. Anal.-Armen. Aca., 47:6 (2012), 278–292  crossref  mathscinet  zmath  isi  scopus  scopus
    11. V. V. Kostin, “Generalization of the Balashov Theorem on Subseries of the Fourier–Haar Series”, Math. Notes, 76:5 (2004), 689–696  mathnet  crossref  crossref  mathscinet  zmath  isi
    12. V. V. Kostin, “Reconstructing Coefficients of Series from Certain Orthogonal Systems of Functions”, Math. Notes, 73:5 (2003), 662–679  mathnet  crossref  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:590
    Full-text PDF :175
    References:122
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025