Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 1999, Volume 63, Issue 1, Pages 37–55
DOI: https://doi.org/10.1070/im1999v063n01ABEH000227
(Mi im227)
 

This article is cited in 25 scientific papers (total in 25 papers)

On Walsh series with monotone coefficients

G. G. Gevorkyana, K. A. Navasardyanb

a Institute of Mathematics, National Academy of Sciences of Armenia
b Yerevan State University
References:
Abstract: We prove that if $a_n\downarrow 0$ and $\sum_{n=0}^\infty a_n^2=+\infty$ then the Walsh series $\sum_{n=0}^\infty a_nW_n(x)$ has the following property. For any measurable function $f(x)$ which is finite almost everywhere, there are numbers $\delta_n=0,\pm 1$ such that the series $\sum_{n=0}^\infty\delta_na_nW_n(x)$ converges to $f(x)$ almost everywhere. This assertion complements and strengthens previously known results about universal Walsh series and Walsh null-series.
Received: 30.09.1997
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 1999, Volume 63, Issue 1, Pages 41–60
DOI: https://doi.org/10.4213/im227
Bibliographic databases:
MSC: 42C10
Language: English
Original paper language: Russian
Citation: G. G. Gevorkyan, K. A. Navasardyan, “On Walsh series with monotone coefficients”, Izv. RAN. Ser. Mat., 63:1 (1999), 41–60; Izv. Math., 63:1 (1999), 37–55
Citation in format AMSBIB
\Bibitem{GevNav99}
\by G.~G.~Gevorkyan, K.~A.~Navasardyan
\paper On Walsh series with monotone coefficients
\jour Izv. RAN. Ser. Mat.
\yr 1999
\vol 63
\issue 1
\pages 41--60
\mathnet{http://mi.mathnet.ru/im227}
\crossref{https://doi.org/10.4213/im227}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1701837}
\zmath{https://zbmath.org/?q=an:0939.42016}
\transl
\jour Izv. Math.
\yr 1999
\vol 63
\issue 1
\pages 37--55
\crossref{https://doi.org/10.1070/im1999v063n01ABEH000227}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000081487100002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33747015779}
Linking options:
  • https://www.mathnet.ru/eng/im227
  • https://doi.org/10.1070/im1999v063n01ABEH000227
  • https://www.mathnet.ru/eng/im/v63/i1/p41
  • This publication is cited in the following 25 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:538
    Russian version PDF:290
    English version PDF:18
    References:81
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024