Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2020, Volume 84, Issue 5, Pages 829–844
DOI: https://doi.org/10.1070/IM8889
(Mi im8889)
 

This article is cited in 3 scientific papers (total in 3 papers)

Uniqueness theorems for one-dimensional and double Franklin series

G. G. Gevorkyan

Yerevan State University
References:
Abstract: The paper contains two main results. First we describe one-dimensional Franklin series converging everywhere except possibly on a finite set to an everywhere-finite integrable function. Second we establish a class of subsets of $[0, 1]^2$ with the following property. If a double Franklin series converges everywhere except on this set to an everywhere-finite integrable function, then it is the Fourier–Franklin series of this function. In particular, all countable sets are in this class.
Keywords: uniqueness theorem, $U$-set, Vallée–Poussin set, Franklin system, double series.
Funding agency Grant number
State Committee on Science of the Ministry of Education and Science of the Republic of Armenia 18T–1A074
This paper was written with the financial support of SCS MES RA under the grant 18T–1A074.
Received: 12.12.2018
Revised: 06.05.2020
Bibliographic databases:
Document Type: Article
UDC: 517.53
MSC: 42C10
Language: English
Original paper language: Russian
Citation: G. G. Gevorkyan, “Uniqueness theorems for one-dimensional and double Franklin series”, Izv. Math., 84:5 (2020), 829–844
Citation in format AMSBIB
\Bibitem{Gev20}
\by G.~G.~Gevorkyan
\paper Uniqueness theorems for one-dimensional and double Franklin series
\jour Izv. Math.
\yr 2020
\vol 84
\issue 5
\pages 829--844
\mathnet{http://mi.mathnet.ru//eng/im8889}
\crossref{https://doi.org/10.1070/IM8889}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2655816}
\zmath{https://zbmath.org/?q=an:1452.42016}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020IzMat..84..829G}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000586482600001}
\elib{https://elibrary.ru/item.asp?id=45171188}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85095130479}
Linking options:
  • https://www.mathnet.ru/eng/im8889
  • https://doi.org/10.1070/IM8889
  • https://www.mathnet.ru/eng/im/v84/i5/p3
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:406
    Russian version PDF:66
    English version PDF:37
    References:52
    First page:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024