Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2018, Volume 209, Issue 6, Pages 802–822
DOI: https://doi.org/10.1070/SM8922
(Mi sm8922)
 

This article is cited in 15 scientific papers (total in 15 papers)

Uniqueness theorems for Franklin series converging to integrable functions

G. G. Gevorkyan

Yerevan State University, Armenia
References:
Abstract: The following results are proved: a) if a Franklin series converges everywhere to a finite integrable function, then it is the Fourier-Franklin series of this function; b) if a Franklin series converges to a finite integrable function everywhere except possibly at points in some countable set and if all its coefficients satisfy a certain necessary condition, then it is the Fourier-Franklin series of this function.
Bibliography: 16 titles.
Keywords: Franklin system, de la Vallée Poussin theorem, uniqueness theorem.
Funding agency Grant number
State Committee on Science of the Ministry of Education and Science of the Republic of Armenia 15T-1A006
Supported by the State Committee on Science of the Ministry of Education and Science of the Republic of Armenia (project no. 15T-1A006).
Received: 06.02.2017 and 28.06.2017
Bibliographic databases:
Document Type: Article
UDC: 517.53
MSC: 42B05
Language: English
Original paper language: Russian
Citation: G. G. Gevorkyan, “Uniqueness theorems for Franklin series converging to integrable functions”, Sb. Math., 209:6 (2018), 802–822
Citation in format AMSBIB
\Bibitem{Gev18}
\by G.~G.~Gevorkyan
\paper Uniqueness theorems for Franklin series converging to integrable functions
\jour Sb. Math.
\yr 2018
\vol 209
\issue 6
\pages 802--822
\mathnet{http://mi.mathnet.ru//eng/sm8922}
\crossref{https://doi.org/10.1070/SM8922}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3807904}
\zmath{https://zbmath.org/?q=an:1402.42039}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018SbMat.209..802G}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000441840600002}
\elib{https://elibrary.ru/item.asp?id=34940683}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85052407892}
Linking options:
  • https://www.mathnet.ru/eng/sm8922
  • https://doi.org/10.1070/SM8922
  • https://www.mathnet.ru/eng/sm/v209/i6/p25
  • This publication is cited in the following 15 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:545
    Russian version PDF:68
    English version PDF:41
    References:56
    First page:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024