Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2009, Volume 73, Issue 2, Pages 279–300
DOI: https://doi.org/10.1070/IM2009v073n02ABEH002446
(Mi im2618)
 

This article is cited in 3 scientific papers (total in 3 papers)

On absolute and unconditional convergence of series in the general Franklin system

G. G. Gevorkyan, K. A. Kerian

Yerevan State University
References:
Abstract: We prove that, for any admissible sequence, the corresponding general Franklin system $\{f_n(x)\}_{n=0}^{\infty}$ possesses the following property. A series $\sum_{n=0}^{\infty}a_nf_n(x)$ is absolutely convergent almost everywhere on a set $E$ if and only if it is unconditionally convergent almost everywhere on $E$.
Keywords: series, general Franklin system, absolute convergence, unconditional convergence.
Received: 15.02.2007
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 2009, Volume 73, Issue 2, Pages 69–90
DOI: https://doi.org/10.4213/im2618
Bibliographic databases:
UDC: 517.51
MSC: 42C10, 42C15, 40A30
Language: English
Original paper language: Russian
Citation: G. G. Gevorkyan, K. A. Kerian, “On absolute and unconditional convergence of series in the general Franklin system”, Izv. RAN. Ser. Mat., 73:2 (2009), 69–90; Izv. Math., 73:2 (2009), 279–300
Citation in format AMSBIB
\Bibitem{GevKer09}
\by G.~G.~Gevorkyan, K.~A.~Kerian
\paper On absolute and unconditional convergence of series in the general Franklin system
\jour Izv. RAN. Ser. Mat.
\yr 2009
\vol 73
\issue 2
\pages 69--90
\mathnet{http://mi.mathnet.ru/im2618}
\crossref{https://doi.org/10.4213/im2618}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2532446}
\zmath{https://zbmath.org/?q=an:1166.42015}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2009IzMat..73..279G}
\elib{https://elibrary.ru/item.asp?id=20425200}
\transl
\jour Izv. Math.
\yr 2009
\vol 73
\issue 2
\pages 279--300
\crossref{https://doi.org/10.1070/IM2009v073n02ABEH002446}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000266177900002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-65349106462}
Linking options:
  • https://www.mathnet.ru/eng/im2618
  • https://doi.org/10.1070/IM2009v073n02ABEH002446
  • https://www.mathnet.ru/eng/im/v73/i2/p69
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:649
    Russian version PDF:228
    English version PDF:14
    References:68
    First page:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024