|
|
Publications in Math-Net.Ru |
Citations |
|
2024 |
1. |
I. S. Kashchenko, S. A. Kaschenko, I. N. Maslenikov, “Stability of solutions to the logistic equation with delay, diffusion, and nonclassical boundary conditions”, Dokl. RAN. Math. Inf. Proc. Upr., 517 (2024), 101–108 ; Dokl. Math., 109:3 (2024), 275–281 |
2. |
S. A. Kaschenko, A. O. Tolbey, “Quasinormal forms for systems of two equations with large delay”, Izvestiya VUZ. Applied Nonlinear Dynamics, 32:6 (2024), 782–795 |
3. |
S. A. Kaschenko, “Chains with Diffusion-Type Couplings Containing a Large Delay”, Mat. Zametki, 115:3 (2024), 355–370 ; Math. Notes, 115:3 (2024), 323–335 |
4. |
Sergey A. Kashchenko, “Asymptotics of Self-Oscillations in Chains of Systems
of Nonlinear Equations” |
1
|
5. |
S. V. Aleshin, D. S. Glyzin, S. A. Kaschenko, “Wave propagation in the Kolmogorov–Petrovsky–Piscounov–Fisher equation with delay”, TMF, 220:3 (2024), 415–435 ; Theoret. and Math. Phys., 220:3 (2024), 1411–1428 |
|
2023 |
6. |
S. A. Kaschenko, D. S. Kosterin, S. D. Glyzin, “A family of piecewise-smooth solutions of a class of spatially distributed equations”, CMFD, 69:2 (2023), 263–275 |
7. |
S. A. Kaschenko, A. O. Tolbey, “Dynamics of a system of two equations with a large delay”, Dokl. RAN. Math. Inf. Proc. Upr., 513 (2023), 51–56 ; Dokl. Math., 108:2 (2023), 369–373 |
1
|
8. |
S. A. Kaschenko, “Dynamics of full-coupled chains of a great number of oscillators with a large delay in couplings”, Izvestiya VUZ. Applied Nonlinear Dynamics, 31:4 (2023), 523–542 |
1
|
9. |
S. A. Kaschenko, A. O. Tolbey, “Bifurcations in the Logistic Equation with Diffusion and Delay in the Boundary Condition”, Mat. Zametki, 113:6 (2023), 940–944 ; Math. Notes, 113:6 (2023), 869–873 |
2
|
10. |
I. S. Kashchenko, S. A. Kaschenko, “Local dynamics of the model of a semiconductor laser with delay”, TMF, 215:2 (2023), 232–241 ; Theoret. and Math. Phys., 215:2 (2023), 658–666 |
1
|
11. |
S. A. Kaschenko, “Dynamics of chains of many oscillators with unidirectional and bidirectional delay coupling”, Zh. Vychisl. Mat. Mat. Fiz., 63:10 (2023), 1617–1636 ; Comput. Math. Math. Phys., 63:10 (2023), 1817–1836 |
1
|
|
2022 |
12. |
S. A. Kaschenko, “Quasi-normal forms in the problem of vibrations of pedestrian bridges”, Dokl. RAN. Math. Inf. Proc. Upr., 506 (2022), 49–53 ; Dokl. Math., 106:2 (2022), 343–347 |
2
|
13. |
S. A. Kaschenko, “Dynamics of the chain of logistic equations with delay and antidiffusive linkage”, Dokl. RAN. Math. Inf. Proc. Upr., 502 (2022), 23–27 ; Dokl. Math., 105:1 (2022), 18–22 |
4
|
14. |
S. A. Kaschenko, D. O. Loginov, “The influence of external environment resistance coefficient on population dynamics”, Izv. Vyssh. Uchebn. Zaved. Mat., 2022, no. 1, 65–73 ; Russian Math. (Iz. VUZ), 66:1 (2022), 53–61 |
15. |
E. V. Grigoryeva, S. A. Kaschenko, “Local dynamics of laser chain model with optoelectronic delayed unidirectional coupling”, Izvestiya VUZ. Applied Nonlinear Dynamics, 30:2 (2022), 189–207 |
2
|
16. |
S. A. Kaschenko, “Asymptotics of the Relaxation Cycle in the Modified Logistic Equation with Delay”, Mat. Zametki, 112:1 (2022), 143–147 ; Math. Notes, 112:1 (2022), 154–158 |
|
2021 |
17. |
S. A. Kaschenko, “Construction of families of equations to describe irregular solutions in the Fermi–Pasta–Ulam problem”, Dokl. RAN. Math. Inf. Proc. Upr., 501 (2021), 52–56 ; Dokl. Math., 104:3 (2021), 360–364 |
18. |
S. A. Kaschenko, “Dynamics of Spatially Distributed Chains of Coupled Systems of Equations in a Two-Dimensional Domain”, Mat. Zametki, 110:5 (2021), 715–725 ; Math. Notes, 110:5 (2021), 709–717 |
19. |
S. A. Kaschenko, “Comparative dynamics of chains of coupled van der Pol equations and coupled systems of van der Pol equations”, TMF, 207:2 (2021), 277–292 ; Theoret. and Math. Phys., 207:2 (2021), 640–654 |
1
|
20. |
S. A. Kaschenko, “Corporate dynamics in chains of coupled logistic equations with delay”, Zh. Vychisl. Mat. Mat. Fiz., 61:7 (2021), 1070–1081 ; Comput. Math. Math. Phys., 61:7 (2021), 1063–1074 |
4
|
|
2020 |
21. |
S. A. Kashchenko, “Bifurcations in a delay logistic equation under small perturbations”, Izv. Vyssh. Uchebn. Zaved. Mat., 2020, no. 10, 47–64 ; Russian Math. (Iz. VUZ), 64:10 (2020), 43–58 |
4
|
22. |
S. A. Kaschenko, D. O. Loginov, “Estimation of the region of global stability of the equilibrium state of the logistic equation with delay”, Izv. Vyssh. Uchebn. Zaved. Mat., 2020, no. 9, 39–55 ; Russian Math. (Iz. VUZ), 64:9 (2020), 34–49 |
10
|
23. |
E. V. Grigorieva, S. A. Kashchenko, “Normalized boundary value problems in the model of optoelectronic oscillator delayed”, Izvestiya VUZ. Applied Nonlinear Dynamics, 28:4 (2020), 361–382 |
3
|
24. |
S. D. Glyzin, S. A. Kaschenko, A. O. Tolbey, “Features of the algorithmic implementation of difference analogues of the logistic equation with delay”, Model. Anal. Inform. Sist., 27:3 (2020), 344–355 |
25. |
S. D. Glyzin, S. A. Kashchenko, “Family of finite-dimensional maps induced by a logistic equation with a delay”, Matem. Mod., 32:3 (2020), 19–46 ; Math. Models Comput. Simul., 12:6 (2020), 856–873 |
2
|
26. |
S. A. Kaschenko, “Local Dynamics of Chains of Van der Pol Coupled Systems”, Mat. Zametki, 108:6 (2020), 936–940 ; Math. Notes, 108:6 (2020), 901–905 |
2
|
27. |
S. A. Kashchenko, D. O. Loginov, “Andronov–Hopf Bifurcation in Logistic Delay Equations with Diffusion and Rapidly Oscillating Coefficients”, Mat. Zametki, 108:1 (2020), 47–63 ; Math. Notes, 108:1 (2020), 50–63 |
3
|
28. |
D. S. Kashchenko, S. A. Kashchenko, “Dynamics of a System of Two Simple Self-Excited Oscillators with Delayed Step-by-Step Feedback”, Rus. J. Nonlin. Dyn., 16:1 (2020), 23–43 |
29. |
S. A. Kaschenko, “Bifurcations in spatially distributed chains of two-dimensional systems of equations”, Uspekhi Mat. Nauk, 75:6(456) (2020), 171–172 ; Russian Math. Surveys, 75:6 (2020), 1153–1155 |
4
|
30. |
S. A. Kashchenko, “Asymptotic behavior of rapidly oscillating solutions of the modified
Camassa–Holm equation”, TMF, 203:1 (2020), 40–55 ; Theoret. and Math. Phys., 203:1 (2020), 469–482 |
3
|
31. |
S. A. Kaschenko, “Asymptotics of regular solutions to the Camassa–Holm problem”, Zh. Vychisl. Mat. Mat. Fiz., 60:2 (2020), 253–266 ; Comput. Math. Math. Phys., 60:2 (2020), 258–271 |
2
|
|
2019 |
32. |
S. D. Glyzin, S. A. Kashchenko, A. O. Tolbey, “Equations with the Fermi-Pasta-Ulam and dislocations nonlinearity”, Izvestiya VUZ. Applied Nonlinear Dynamics, 27:4 (2019), 52–70 |
1
|
33. |
I. S. Kashchenko, S. A. Kaschenko, “Dynamics of equation with two delays modelling the number of population”, Izvestiya VUZ. Applied Nonlinear Dynamics, 27:2 (2019), 21–38 |
2
|
34. |
S. A. Kashchenko, “Homogenization over the spatial variable in nonlinear parabolic systems”, Tr. Mosk. Mat. Obs., 80:1 (2019), 63–86 ; Trans. Moscow Math. Soc., 80 (2019), 53–71 |
3
|
35. |
S. A. Kashchenko, D. O. Loginov, “Bifurcations Due to the Variation of Boundary Conditions in the Logistic Equation with Delay and Diffusion”, Mat. Zametki, 106:1 (2019), 138–143 ; Math. Notes, 106:1 (2019), 136–141 |
9
|
36. |
S. A. Kaschenko, “Asymptotics of rapidly oscillating solutions of the generalized Korteweg–de Vries–Burgers equation”, Uspekhi Mat. Nauk, 74:4(448) (2019), 181–182 ; Russian Math. Surveys, 74:4 (2019), 755–757 |
3
|
|
2018 |
37. |
I. S. Kashchenko, S. A. Kashchenko, “Analysis of local dynamics of difference and close to them differential-difference equations”, Izv. Vyssh. Uchebn. Zaved. Mat., 2018, no. 9, 29–41 ; Russian Math. (Iz. VUZ), 62:9 (2018), 24–34 |
4
|
38. |
S. A. Kashchenko, M. M. Preobrazhenskaya, “Bifurcations in the generalized Korteweg–de Vries equation”, Izv. Vyssh. Uchebn. Zaved. Mat., 2018, no. 2, 54–68 ; Russian Math. (Iz. VUZ), 62:2 (2018), 49–61 |
3
|
39. |
S. A. Kashchenko, “Dynamics of two-component parabolic systems of Schrödinger type”, Izvestiya VUZ. Applied Nonlinear Dynamics, 26:5 (2018), 81–100 |
1
|
40. |
E. V. Grigoryeva, S. A. Kashchenko, D. V. Glazkov, “Features of the local dynamics of the opto-electronic oscillator model with delay”, Model. Anal. Inform. Sist., 25:1 (2018), 71–82 |
41. |
S. A. Kashchenko, “The simplest critical cases in the dynamics of nonlinear systems with small diffusion”, Tr. Mosk. Mat. Obs., 79:1 (2018), 97–115 ; Trans. Moscow Math. Soc., 2018, 85–100 |
7
|
42. |
S. A. Kashchenko, “Application of the Averaging Principle to the Study of the Dynamics of the Delay Logistic Equation”, Mat. Zametki, 104:2 (2018), 216–230 ; Math. Notes, 104:2 (2018), 231–243 |
4
|
43. |
S. A. Kashchenko, “Regular and irregular solutions in the problem of dislocations in solids”, TMF, 195:3 (2018), 362–380 ; Theoret. and Math. Phys., 195:3 (2018), 807–824 |
3
|
44. |
S. A. Kashchenko, “Dynamics of a delay logistic equation with slowly varying coefficients”, Zh. Vychisl. Mat. Mat. Fiz., 58:12 (2018), 1999–2013 ; Comput. Math. Math. Phys., 58:12 (2018), 1926–1936 |
1
|
|
2017 |
45. |
S. A. Kashchenko, “Stability of the solutions of the simplest space-distributed discrete equations”, Model. Anal. Inform. Sist., 24:5 (2017), 537–549 |
46. |
S. A. Kashchenko, “About bifurcations at small perturbations in a logistic equation with delay”, Model. Anal. Inform. Sist., 24:2 (2017), 168–185 |
3
|
47. |
S. A. Kashchenko, “Asymptotic of eigenvalues of periodic and antiperiodic boundary value problem for second order differential equations”, Model. Anal. Inform. Sist., 24:1 (2017), 13–30 |
1
|
48. |
S. A. Kashchenko, “Periodic Solutions of Nonlinear Equations Generalizing Logistic Equations with Delay”, Mat. Zametki, 102:2 (2017), 216–230 ; Math. Notes, 102:2 (2017), 181–192 |
8
|
49. |
S. A. Kashchenko, “Bifurcations in Kuramoto–Sivashinsky equations”, TMF, 192:1 (2017), 23–40 ; Theoret. and Math. Phys., 192:1 (2017), 958–973 |
6
|
50. |
S. A. Kashchenko, “Rapidly oscillating solutions of a generalized Korteweg–de Vries equation”, Zh. Vychisl. Mat. Mat. Fiz., 57:11 (2017), 1812–1823 ; Comput. Math. Math. Phys., 57:11 (2017), 1778–1788 |
1
|
|
2016 |
51. |
S. D. Glyzin, S. A. Kashchenko, A. O. Tolbey, “Two wave interactions in a Fermi–Pasta–Ulam model”, Model. Anal. Inform. Sist., 23:5 (2016), 548–558 |
5
|
52. |
S. A. Kashchenko, “Asymptotic expansions of eigenvalues of periodic and antiperiodic boundary problems for singularly perturbed second order differential equation with turning points”, Model. Anal. Inform. Sist., 23:1 (2016), 61–85 |
53. |
S. A. Kashchenko, “Asymptotic expansions of eigenvalues of the first boundary problem for singularly perturbed second order differential equation with turning points”, Model. Anal. Inform. Sist., 23:1 (2016), 41–60 |
2
|
54. |
I. S. Kashchenko, S. A. Kashchenko, “Local dynamics of two-component singularly perturbed parabolic systems”, Tr. Mosk. Mat. Obs., 77:1 (2016), 67–82 ; Trans. Moscow Math. Soc., 77 (2016), 55–68 |
3
|
55. |
Sergey A. Kashchenko, “The Dynamics of Second-order Equations with Delayed Feedback and a Large Coefficient of Delayed Control”, Regul. Chaotic Dyn., 21:7-8 (2016), 811–820 |
3
|
|
2015 |
56. |
S. A. Kaschenko, “Asymptotics of eigenvalues of first boundary value problem for singularly pertubed second-order differential equation with turning points”, Model. Anal. Inform. Sist., 22:5 (2015), 682–710 |
5
|
57. |
S. V. Aleshin, S. D. Glyzin, S. A. Kaschenko, “Dynamical properties of the Fisher–Kolmogorov–Petrovskii–Piscounov equation with deviation of the spatial variable”, Model. Anal. Inform. Sist., 22:5 (2015), 609–628 |
2
|
58. |
N. D. Bykova, S. A. Kaschenko, “Corporate dynamics of systems of logistic delay equations with large delay control”, Model. Anal. Inform. Sist., 22:3 (2015), 372–391 |
59. |
S. V. Aleshin, S. D. Glyzin, S. A. Kaschenko, “Fisher–Kolmogorov–Petrovskii–Piscounov equation with delay”, Model. Anal. Inform. Sist., 22:2 (2015), 304–321 |
5
|
60. |
S. A. Kashchenko, “Dynamics of the Logistic Equation with Delay”, Mat. Zametki, 98:1 (2015), 85–100 ; Math. Notes, 98:1 (2015), 98–110 |
11
|
61. |
I. S. Kashchenko, S. A. Kashchenko, “Dynamics of strongly coupled spatially distributed logistic equations with delay”, Zh. Vychisl. Mat. Mat. Fiz., 55:4 (2015), 610–620 ; Comput. Math. Math. Phys., 55:4 (2015), 607–617 |
3
|
|
2014 |
62. |
I. S. Kashchenko, S. A. Kaschenko, “Local dynamics of difference and difference-differential equations”, Izvestiya VUZ. Applied Nonlinear Dynamics, 22:1 (2014), 71–92 |
1
|
63. |
S. A. Kashchenko, “The dynamics of the logistic equation with delay and delayed control”, Model. Anal. Inform. Sist., 21:5 (2014), 61–77 |
3
|
64. |
S. A. Kaschenko, V. E. Frolov, “Asymptotics of a Steady-State Condition of Finite-Difference Approximation of a Logistic Equation with Delay and Small Diffusion”, Model. Anal. Inform. Sist., 21:1 (2014), 94–114 |
2
|
65. |
S. V. Aleshin, S. A. Kaschenko, “Local Dynamics of a Logistic Equation with Delay”, Model. Anal. Inform. Sist., 21:1 (2014), 73–88 |
66. |
I. S. Kashchenko, S. A. Kashchenko, “Local dynamics of an equation with large delay and distributed deviation of the space variable”, Sibirsk. Mat. Zh., 55:2 (2014), 315–323 ; Siberian Math. J., 55:2 (2014), 254–261 |
3
|
67. |
D. S. Glyzin, S. A. Kashchenko, “Spatially distributed control of the dynamics of the logistic delay equation”, Zh. Vychisl. Mat. Mat. Fiz., 54:6 (2014), 953–968 ; Comput. Math. Math. Phys., 54:6 (2014), 963–976 |
68. |
I. S. Kashchenko, S. A. Kashchenko, “Dynamics of the logistic delay equation with a large spatially distributed control coefficient”, Zh. Vychisl. Mat. Mat. Fiz., 54:5 (2014), 766–778 ; Comput. Math. Math. Phys., 54:5 (2014), 785–796 |
3
|
|
2013 |
69. |
S. A. Kaschenko, E. V. Grigorieva, “Local Dynamics of a Laser with Rapidly Oscillating Parameters”, Model. Anal. Inform. Sist., 20:5 (2013), 45–61 |
70. |
S. A. Kaschenko, “Relaxation Oscillations in Models of Multi-Species Biocenose”, Model. Anal. Inform. Sist., 20:5 (2013), 5–24 |
71. |
N. D. Bykova, S. D. Glyzin, S. A. Kaschenko, “Parametric Resonance in the Logistic Equation with Delay under a Two-Frequency Perturbation”, Model. Anal. Inform. Sist., 20:3 (2013), 86–98 |
3
|
72. |
S. A. Kashchenko, “Relaxation Oscillations in a System with Delays Modeling the Predator–Prey Problem”, Model. Anal. Inform. Sist., 20:1 (2013), 52–98 |
6
|
73. |
E. V. Grigorieva, I. S. Kashchenko, S. A. Kashchenko, “Quasinormal Forms for Lang–Kobayashi Equations with a Large Control Coefficient”, Model. Anal. Inform. Sist., 20:1 (2013), 18–29 |
1
|
|
2012 |
74. |
D. S. Glyzin, S. A. Kaschenko, “Dynamics of a Complex Spatially Distributed Hutchinson Equation”, Model. Anal. Inform. Sist., 19:5 (2012), 35–39 |
75. |
S. A. Kaschenko, “Stationary States of a Delay Differentional Equation of Insect Population's Dynamics”, Model. Anal. Inform. Sist., 19:5 (2012), 18–34 |
8
|
76. |
S. A. Kaschenko, “Asymptotics of Solutions of the Generalized Hutchinson's Equation”, Model. Anal. Inform. Sist., 19:3 (2012), 32–61 |
16
|
77. |
I. S. Kashchenko, S. A. Kashchenko, “The dynamics of Kuramoto equation with spatially-distributed control”, Model. Anal. Inform. Sist., 19:1 (2012), 24–35 |
1
|
78. |
S. A. Kashchenko, A. S. Polstyanov, “The asymptotic of periodic solutions of autonomous parabolic equations with rapidly oscillating coefficients and equations with large diffusion coefficients”, Model. Anal. Inform. Sist., 19:1 (2012), 7–23 |
1
|
79. |
I. S. Kashchenko, S. A. Kashchenko, “Quasi-normal forms for parabolic systems with strong nonlinearity and weak diffusion”, Zh. Vychisl. Mat. Mat. Fiz., 52:8 (2012), 1482–1491 ; Comput. Math. Math. Phys., 52:8 (2012), 1163–1172 |
5
|
|
2011 |
80. |
S. A. Kashchenko, “Principal quasinormal forms for two-component systems of parabolic equations”, Model. Anal. Inform. Sist., 18:3 (2011), 12–20 |
81. |
D. S. Glyzin, S. A. Kashchenko, A. S. Polst'yanov, “Spatially inhomogeneous periodic solutions in the Hutchinson equation with distributed saturation”, Model. Anal. Inform. Sist., 18:1 (2011), 37–45 |
1
|
82. |
S. A. Kashchenko, “Dynamics of a quasi-linear boundary problem generalizing the equation with large delay”, Model. Anal. Inform. Sist., 18:1 (2011), 28–31 |
|
2010 |
83. |
D. V. Glazkov, S. A. Kashchenko, “Local dynamics of DDE with large delay in the vicinity of the self-similar cycle”, Model. Anal. Inform. Sist., 17:3 (2010), 38–47 |
2
|
84. |
E. V. Grigorieva, I. S. Kashchenko, S. A. Kashchenko, “Multistability in a laser model with large delay”, Model. Anal. Inform. Sist., 17:2 (2010), 17–27 |
3
|
|
2009 |
85. |
S. D. Glyzin, S. A. Kashchenko, A. S. Polstyanov, “Spatially inhomogeneous periodic solutions in distributed Hutchinson equation”, Model. Anal. Inform. Sist., 16:4 (2009), 77–85 |
3
|
|
2008 |
86. |
S. A. Kashchenko, V. V. Maiorov, M. L. Myachin, “Complex oscillation in systems of two and three spiking neurons”, Model. Anal. Inform. Sist., 15:2 (2008), 72–74 |
87. |
S. A. Kashchenko, A. S. Polst'yanov, “Relaxation oscillations in the simplest models with delay”, Model. Anal. Inform. Sist., 15:2 (2008), 55–60 |
|
2001 |
88. |
T. S. Achromeeva, M. A. Kapustin, S. A. Kashchenko, P. V. Kurakin, G. G. Malinetskii, I. G. Medvedev, N. A. Mitin, Yu. N. Orlov, A. V. Podlazov, S. A. Posashkov, A. I. Rusakov, D. V. Serebryakov, S. A. Solov'ev, D. S. Chernavskii, “New researches in systems analysis and computation modeling of Russian educational strategy and politics”, Keldysh Institute preprints, 2001, 089 |
|
2000 |
89. |
S. A. Kashchenko, “Bifurcations in the neighborhood of a cycle under small perturbations with a large delay”, Zh. Vychisl. Mat. Mat. Fiz., 40:5 (2000), 693–702 ; Comput. Math. Math. Phys., 40:5 (2000), 659–668 |
15
|
|
1999 |
90. |
S. A. Kashchenko, “Local dynamics of nonlinear singularly perturbed systems with delay”, Differ. Uravn., 35:10 (1999), 1343–1355 ; Differ. Equ., 35:10 (1999), 1360–1373 |
12
|
91. |
S. A. Kashchenko, “Dynamics of equations with feedback of impulse type”, Differ. Uravn., 35:7 (1999), 889–898 ; Differ. Equ., 35:7 (1999), 896–904 |
92. |
S. A. Kashchenko, “Asymptotic analysis of the auto-generators dynamics with different non-linear delay feedback”, Fundam. Prikl. Mat., 5:4 (1999), 1027–1060 |
3
|
93. |
S. A. Kashchenko, “Bifurcation peculiarities of a singularly perturbed equation with delay”, Sibirsk. Mat. Zh., 40:3 (1999), 567–572 ; Siberian Math. J., 40:3 (1999), 483–487 |
5
|
|
1998 |
94. |
S. A. Kashchenko, “The Ginzburg–Landau equation as a normal form for a second-order difference-differential equation with a large delay”, Zh. Vychisl. Mat. Mat. Fiz., 38:3 (1998), 457–465 ; Comput. Math. Math. Phys., 38:3 (1998), 443–451 |
49
|
|
1997 |
95. |
S. A. Kashchenko, V. V. Maiorov, I. Yu. Myshkin, “Wave structures in ring neuron systems”, Matem. Mod., 9:3 (1997), 29–39 |
1
|
|
1995 |
96. |
S. A. Kaschenko, V. V. Maiorov, M. L. Myachin, “Oscillations in systems of equations with delay and difference
diffusion that model local neural networks”, Dokl. Akad. Nauk, 344:3 (1995), 319–322 |
97. |
S. A. Kaschenko, V. V. Maiorov, “Wave structures in ring systems of homogeneous neuron modules”, Dokl. Akad. Nauk, 342:3 (1995), 318–321 |
98. |
S. A. Kashchenko, “Asymptotics of relaxation oscillations in systems of differential-difference equations with a compactly supported nonlinearity. II”, Differ. Uravn., 31:12 (1995), 1968–1976 ; Differ. Equ., 31:12 (1995), 1938–1946 |
4
|
99. |
S. A. Kashchenko, “Asymptotics of relaxation oscillations in systems of differential-difference equations with a compactly supported nonlinearity. I”, Differ. Uravn., 31:8 (1995), 1330–1339 ; Differ. Equ., 31:8 (1995), 1275–1285 |
7
|
100. |
E. V. Grigoryeva, S. A. Kashchenko, “Poincaré mappings in laser models with periodic modulation of the parameters”, Differ. Uravn., 31:1 (1995), 16–22 ; Differ. Equ., 31:1 (1995), 12–17 |
101. |
S. A. Kashchenko, V. V. Maiorov, I. Yu. Myshkin, “Wave distribution in simplest ring neural structures”, Matem. Mod., 7:12 (1995), 3–18 |
1
|
|
1994 |
102. |
S. A. Kashchenko, “The construction of normalized systems for investigating the dynamics of hybrid and hyperbolic equations”, Zh. Vychisl. Mat. Mat. Fiz., 34:4 (1994), 564–575 ; Comput. Math. Math. Phys., 34:4 (1994), 479–489 |
6
|
|
1993 |
103. |
S. A. Kaschenko, V. V. Maiorov, I. Yu. Myshkin, “Investigation of oscillations in ring neural structures”, Dokl. Akad. Nauk, 333:5 (1993), 594–597 ; Dokl. Math., 38:12 (1993), 483–485 |
1
|
104. |
A. S. Dmitriev, S. A. Kaschenko, “Asymptotics of nonregular oscillations in a model of a
self-induced generator with delayed feedback”, Dokl. Akad. Nauk, 328:2 (1993), 174–177 |
4
|
105. |
S. A. Kashchenko, V. V. Maiorov, “On a differential-difference equation modeling neuron impulse activity”, Matem. Mod., 5:12 (1993), 13–25 |
13
|
|
1992 |
106. |
S. A. Kashchenko, “Rapidly oscillating traveling waves in systems with small diffusion”, Differ. Uravn., 28:2 (1992), 254–262 ; Differ. Equ., 28:2 (1992), 218–225 |
1
|
|
1991 |
107. |
E. V. Grigor'eva, S. A. Kaschenko, “Asymptotic investigation of multistability phenomena in laser
models with opto-electronic feedback”, Dokl. Akad. Nauk SSSR, 316:2 (1991), 327–331 ; Dokl. Math., 36:1 (1991), 35–38 |
108. |
E. V. Grigoryeva, S. A. Kashchenko, “Relaxation oscillations in a system of equations describing the operation of a solid-state laser with a nonlinear element of delaying action”, Differ. Uravn., 27:5 (1991), 752–758 ; Differ. Equ., 27:5 (1991), 506–512 |
109. |
S. A. Kashchenko, “Asymptotic form of spatially non-uniform structures in coherent nonlinear optical systems”, Zh. Vychisl. Mat. Mat. Fiz., 31:3 (1991), 467–473 ; U.S.S.R. Comput. Math. Math. Phys., 31:3 (1991), 97–102 |
17
|
|
1990 |
110. |
S. A. Kaschenko, “The local dynamics of two-component contrast structures in the neighborhood of a bifurcation point”, Dokl. Akad. Nauk SSSR, 312:2 (1990), 345–350 ; Dokl. Math., 35:5 (1990), 420–422 |
3
|
111. |
S. A. Kashchenko, “Spatial heterogeneous structures in the simplest models with delay and diffusion”, Matem. Mod., 2:9 (1990), 49–69 |
11
|
112. |
E. V. Grigoryeva, S. A. Kashchenko, N. A. Loiko, A. M. Samson, “Application of asymptotic methods for investigation of stationary regimes of generation in lasers with delay element”, Matem. Mod., 2:4 (1990), 97–120 |
1
|
113. |
E. V. Grigor'eva, S. A. Kaschenko, N. A. Loiko, A. M. Samson, “Multistability and chaos in a negative-feedback laser”, Kvantovaya Elektronika, 17:8 (1990), 1023–1028 [Sov J Quantum Electron, 20:8 (1990), 938–943 ] |
3
|
114. |
S. A. Kashchenko, “Asymptotic behaviour of rapidly oscillating contrasting spatial structures”, Zh. Vychisl. Mat. Mat. Fiz., 30:2 (1990), 254–269 ; U.S.S.R. Comput. Math. Math. Phys., 30:1 (1990), 186–197 |
4
|
|
1989 |
115. |
S. A. Kaschenko, “Short-wave bifurcations in systems with small diffusion”, Dokl. Akad. Nauk SSSR, 307:2 (1989), 269–273 ; Dokl. Math., 40:1 (1990), 54–58 |
2
|
116. |
S. A. Kaschenko, “Complex periodic solutions of a system of differential-difference
equations with small diffusion”, Dokl. Akad. Nauk SSSR, 306:1 (1989), 35–38 ; Dokl. Math., 39:3 (1989), 442–445 |
1
|
117. |
S. A. Kashchenko, “Application of the normalization method to the study of the dynamics of a differential-difference equation with a small factor multiplying the derivative”, Differ. Uravn., 25:8 (1989), 1448–1451 |
30
|
118. |
S. A. Kashchenko, “Spatial singularities of high-mode bifurcations of two-component systems with small diffusion”, Differ. Uravn., 25:2 (1989), 262–270 ; Differ. Equ., 25:2 (1989), 193–199 |
13
|
|
1988 |
119. |
S. A. Kaschenko, “Quasinormal forms for parabolic equations with small diffusion”, Dokl. Akad. Nauk SSSR, 299:5 (1988), 1049–1052 ; Dokl. Math., 37:2 (1988), 510–513 |
28
|
120. |
S. A. Kashchenko, “On miniversal deformations of matrices”, Uspekhi Mat. Nauk, 43:1(259) (1988), 201–202 ; Russian Math. Surveys, 43:1 (1988), 241–242 |
3
|
|
1987 |
121. |
S. A. Kashchenko, “Steady regimes of the Hutchinson equation with diffusion”, Dokl. Akad. Nauk SSSR, 292:2 (1987), 327–330 |
9
|
122. |
S. A. Kashchenko, “Investigation of the asymptotic behavior of periodic solutions of autonomous parabolic equations by methods of the larger parameter”, Differ. Uravn., 23:2 (1987), 283–292 |
1
|
|
1986 |
123. |
A. B. Vasil'eva, S. A. Kashchenko, Yu. S. Kolesov, N. Kh. Rozov, “Bifurcation of self-oscillations of nonlinear parabolic equations with small diffusion”, Mat. Sb. (N.S.), 130(172):4(8) (1986), 488–499 ; Math. USSR-Sb., 58:2 (1987), 491–503 |
29
|
124. |
S. A. Kaschenko, “Asymptotics of periodic solutions of autonomous parabolic equations with small diffusion”, Sibirsk. Mat. Zh., 27:6 (1986), 116–127 ; Siberian Math. J., 27:6 (1986), 880–889 |
5
|
|
1985 |
125. |
S. A. Kashchenko, Yu. S. Kolesov, “Diffusion instability of a torus”, Dokl. Akad. Nauk SSSR, 281:6 (1985), 1307–1309 |
2
|
126. |
S. A. Kashchenko, “Optimization of the hunting process”, Differ. Uravn., 21:10 (1985), 1706–1709 |
1
|
|
1983 |
127. |
S. A. Kashchenko, “Stationary modes of an equation describing fluctuations of an
insect population”, Dokl. Akad. Nauk SSSR, 273:2 (1983), 328–330 |
7
|
|
1982 |
128. |
S. A. Kashchenko, “Investigation, by large parameter methods, of a system of nonlinear differential-difference equations modeling a predator-prey problem”, Dokl. Akad. Nauk SSSR, 266:4 (1982), 792–795 |
14
|
|
1980 |
129. |
S. A. Kaschenko, Yu. S. Kolesov, “Parametric resonance in systems with lag under two-frequency perturbation”, Sibirsk. Mat. Zh., 21:2 (1980), 113–118 ; Siberian Math. J., 21:2 (1980), 231–235 |
4
|
|
1974 |
130. |
S. A. Kashchenko, Yu. S. Kolesov, “A test for the stability of the solutions of singularly perturbed second order equations with periodic coefficients”, Uspekhi Mat. Nauk, 29:4(178) (1974), 171–172 |
1
|
|
|
|
2012 |
131. |
D. V. Anosov, V. S. Afraimovich, L. A. Bunimovich, S. V. Gonchenko, V. Z. Grines, Yu. S. Ilyashenko, A. B. Katok, S. A. Kashchenko, V. V. Kozlov, L. M. Lerman, A. D. Morozov, A. I. Neishtadt, Ya. B. Pesin, A. M. Samoilenko, Ya. G. Sinai, D. V. Treschev, D. V. Turaev, A. N. Sharkovskii, A. L. Shil'nikov, “Leonid Pavlovich Shil'nikov (obituary)”, Uspekhi Mat. Nauk, 67:3(405) (2012), 175–178 ; Russian Math. Surveys, 67:3 (2012), 573–577 |
|
2010 |
132. |
E. Grigorieva, S. Kaschenko, “Dynamics of spikes in delay coupled semiconductor lasers”, Regul. Chaotic Dyn., 15:2-3 (2010), 319–327 |
4
|
|
Presentations in Math-Net.Ru |
1. |
Построение квазинормальных форм для систем двух уравнений с большим запаздыванием S. A. Kaschenko
Hamiltonian systems and statistical mechanics May 13, 2024 16:30
|
2. |
Динамика пространственно–распределенных цепочек логистических уравнений с запаздыванием S. A. Kaschenko
November 8, 2022 15:30
|
3. |
Irregular solutions in a chain of coupled van der Pol equations S. A. Kaschenko, A. O. Tolbey
International Conference “Differential Equations and Optimal Control” dedicated to the centenary of the birth of Academician Evgenii Frolovich Mishchenko June 9, 2022 18:50
|
4. |
Relaxation oscillations in a second-order equation with delayed feedback S. A. Kaschenko
International Conference “Differential Equations and Optimal Control” dedicated to the centenary of the birth of Academician Evgenii Frolovich Mishchenko June 8, 2022 17:00
|
5. |
Irregular solutions in the spatially distributed Fermi-Pasta-Ulam problem S. A. Kaschenko
Regular and Chaotic Dynamics November 25, 2021 12:20
|
6. |
Динамика моделей на основе логистического уравнения с запаздыванием S. A. Kaschenko
August 9, 2021 14:50
|
7. |
Региональный научно-образовательный математический центр «Центр интегрируемых систем» S. A. Kaschenko, A. V. Mikhailov
General Meeting of the Branch of Mathematical Sciences, RAS, 2021 April 19, 2021 12:40
|
8. |
Взаимодействие волн в задаче Ферми-Паста-Улама S. A. Kashchenko
Seminar of the Department of Mechanics February 8, 2016 12:00
|
|
|
Organisations |
|
|
|
|