|
Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2018, Number 2, Pages 54–68
(Mi ivm9330)
|
|
|
|
This article is cited in 3 scientific papers (total in 3 papers)
Bifurcations in the generalized Korteweg–de Vries equation
S. A. Kashchenkoab, M. M. Preobrazhenskayabc a MEPhi National Research Nuclear University,
31 Kashirskoe Highway, Moscow, 115409 Russia
b P.G. Demidov Yaroslavl State University,
14 Sovetskaya str., Yaroslavl, 150003 Russia
c Scientific Center in Chernogolovka of Russian Academy of Sciences,
9 Lesnaya str., Chernogolovka, Moscow region, 142432 Russia
Abstract:
We consider the generalized Korteweg–de Vries (KdV) equation and the Korteweg–de Vries–Burgers (KdVB) equation with boundary condition by space variable. For different values of the parameters in a sufficiently small neighborhood of the zero equilibrium state we construct the asymptotic behavior of periodic solutions and invariant tori. Separately we consider the case of the characteristic equation has a countable number of roots in the range of stability of the zero solution. In this situation we build a special nonlinear boundary-value problem, which plays the role of a normal form and determines the dynamics of the original problem.
Keywords:
partial derivative differential equation, torus, normal form method, bifurcation.
Received: 26.10.2016
Citation:
S. A. Kashchenko, M. M. Preobrazhenskaya, “Bifurcations in the generalized Korteweg–de Vries equation”, Izv. Vyssh. Uchebn. Zaved. Mat., 2018, no. 2, 54–68; Russian Math. (Iz. VUZ), 62:2 (2018), 49–61
Linking options:
https://www.mathnet.ru/eng/ivm9330 https://www.mathnet.ru/eng/ivm/y2018/i2/p54
|
Statistics & downloads: |
Abstract page: | 293 | Full-text PDF : | 62 | References: | 45 | First page: | 24 |
|