Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2018, Number 2, Pages 54–68 (Mi ivm9330)  

This article is cited in 3 scientific papers (total in 3 papers)

Bifurcations in the generalized Korteweg–de Vries equation

S. A. Kashchenkoab, M. M. Preobrazhenskayabc

a MEPhi National Research Nuclear University, 31 Kashirskoe Highway, Moscow, 115409 Russia
b P.G. Demidov Yaroslavl State University, 14 Sovetskaya str., Yaroslavl, 150003 Russia
c Scientific Center in Chernogolovka of Russian Academy of Sciences, 9 Lesnaya str., Chernogolovka, Moscow region, 142432 Russia
Full-text PDF (245 kB) Citations (3)
References:
Abstract: We consider the generalized Korteweg–de Vries (KdV) equation and the Korteweg–de Vries–Burgers (KdVB) equation with boundary condition by space variable. For different values of the parameters in a sufficiently small neighborhood of the zero equilibrium state we construct the asymptotic behavior of periodic solutions and invariant tori. Separately we consider the case of the characteristic equation has a countable number of roots in the range of stability of the zero solution. In this situation we build a special nonlinear boundary-value problem, which plays the role of a normal form and determines the dynamics of the original problem.
Keywords: partial derivative differential equation, torus, normal form method, bifurcation.
Funding agency Grant number
Russian Science Foundation 14-21-00158
Received: 26.10.2016
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2018, Volume 62, Issue 2, Pages 49–61
DOI: https://doi.org/10.3103/S1066369X18020068
Bibliographic databases:
Document Type: Article
UDC: 517.988
Language: Russian
Citation: S. A. Kashchenko, M. M. Preobrazhenskaya, “Bifurcations in the generalized Korteweg–de Vries equation”, Izv. Vyssh. Uchebn. Zaved. Mat., 2018, no. 2, 54–68; Russian Math. (Iz. VUZ), 62:2 (2018), 49–61
Citation in format AMSBIB
\Bibitem{KasPre18}
\by S.~A.~Kashchenko, M.~M.~Preobrazhenskaya
\paper Bifurcations in the generalized Korteweg--de Vries equation
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2018
\issue 2
\pages 54--68
\mathnet{http://mi.mathnet.ru/ivm9330}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2018
\vol 62
\issue 2
\pages 49--61
\crossref{https://doi.org/10.3103/S1066369X18020068}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000427510500006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85043990448}
Linking options:
  • https://www.mathnet.ru/eng/ivm9330
  • https://www.mathnet.ru/eng/ivm/y2018/i2/p54
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:293
    Full-text PDF :62
    References:45
    First page:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024