Modelirovanie i Analiz Informatsionnykh Sistem
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Model. Anal. Inform. Sist.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Modelirovanie i Analiz Informatsionnykh Sistem, 2015, Volume 22, Number 2, Pages 304–321 (Mi mais443)  

This article is cited in 5 scientific papers (total in 5 papers)

Fisher–Kolmogorov–Petrovskii–Piscounov equation with delay

S. V. Aleshinab, S. D. Glyzinba, S. A. Kaschenkocb

a Scientific Center in Chernogolovka RAS, Lesnaya str., 9, Chernogolovka, Moscow region, 142432, Russia
b P. G. Demidov Yaroslavl State University, Sovetskaya str., 14, Yaroslavl, 150000, Russia
c National Research Nuclear University MEPhI, Kashirskoye shosse 31, Moscow, 115409, Russia
References:
Abstract: We considered the problem of density wave propagation in a logistic equation with delay and diffusion (Fisher–Kolmogorov equation with delay). It was constructed a Ginzburg–Landau equation in order to study the qualitative behavior of the solution near the equilibrium state. The numerical analysis of wave propagation shows that for a sufficiently small delay this equation has a solution similar to the solution of a classical Fisher–Kolmogorov equation. The delay increasing leads to existence of the oscillatory component in spatial distribution of solutions. A further increase of delay leads to the destruction of the traveling wave. That is expressed in the fact that undamped spatio-temporal fluctuations exist in a neighborhood of the initial perturbation. These fluctuations are close to the solution of the corresponding boundary value problem with periodic boundary conditions. Finally, when the delay is sufficiently large we observe intensive spatio-temporal fluctuations in the whole area of wave propagation.
Keywords: attractor, bifurcation, Fisher–Kolmogorov equation, Ginzburg–Landau equation.
Received: 20.01.2015
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: S. V. Aleshin, S. D. Glyzin, S. A. Kaschenko, “Fisher–Kolmogorov–Petrovskii–Piscounov equation with delay”, Model. Anal. Inform. Sist., 22:2 (2015), 304–321
Citation in format AMSBIB
\Bibitem{AleGlyKas15}
\by S.~V.~Aleshin, S.~D.~Glyzin, S.~A.~Kaschenko
\paper Fisher--Kolmogorov--Petrovskii--Piscounov equation with delay
\jour Model. Anal. Inform. Sist.
\yr 2015
\vol 22
\issue 2
\pages 304--321
\mathnet{http://mi.mathnet.ru/mais443}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3417829}
\elib{https://elibrary.ru/item.asp?id=23405838}
Linking options:
  • https://www.mathnet.ru/eng/mais443
  • https://www.mathnet.ru/eng/mais/v22/i2/p304
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Моделирование и анализ информационных систем
    Statistics & downloads:
    Abstract page:1260
    Full-text PDF :1017
    References:93
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024