Trudy Moskovskogo Matematicheskogo Obshchestva
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Tr. Mosk. Mat. Obs.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Moskovskogo Matematicheskogo Obshchestva, 2018, Volume 79, Issue 1, Pages 97–115 (Mi mmo609)  

This article is cited in 8 scientific papers (total in 8 papers)

The simplest critical cases in the dynamics of nonlinear systems with small diffusion

S. A. Kashchenkoab

a P.G. Demidov Yaroslavl State University
b National Research Nuclear University MEPhI
Full-text PDF (291 kB) Citations (8)
References:
Abstract: Systems of nonlinear equations of parabolic type provide models for many processes and phenomena. A special role is played by systems with relatively small diffusion coefficients. In investigating the dynamical properties of solutions, the diffusion coefficients being small leads to the appearance of infinite-dimensional critical cases in problems on the stability of solutions. In this paper we study the simplest and most important of these critical cases. Special nonlinear evolution equations are constructed which play the role of normal forms; their nonlocal dynamics determines the behaviour of solutions of the original system in a small neighbourhood of an equilibrium state. The importance of the renormalization procedure is demonstrated.
Key words and phrases: quasinormal forms, asymptotic expansion, nonlinear dynamics, and small parameter.
Received: 17.05.2017
Revised: 23.06.2017
English version:
Transactions of the Moscow Mathematical Society, 2018, Pages 85–100
DOI: https://doi.org/10.1090/mosc/285
Bibliographic databases:
Document Type: Article
UDC: 517.9
MSC: 35K67
Language: Russian
Citation: S. A. Kashchenko, “The simplest critical cases in the dynamics of nonlinear systems with small diffusion”, Tr. Mosk. Mat. Obs., 79, no. 1, MCCME, M., 2018, 97–115; Trans. Moscow Math. Soc., 2018, 85–100
Citation in format AMSBIB
\Bibitem{Kas18}
\by S.~A.~Kashchenko
\paper The simplest critical cases in the dynamics of nonlinear systems with small diffusion
\serial Tr. Mosk. Mat. Obs.
\yr 2018
\vol 79
\issue 1
\pages 97--115
\publ MCCME
\publaddr M.
\mathnet{http://mi.mathnet.ru/mmo609}
\elib{https://elibrary.ru/item.asp?id=37045082}
\transl
\jour Trans. Moscow Math. Soc.
\yr 2018
\pages 85--100
\crossref{https://doi.org/10.1090/mosc/285}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85061016546}
Linking options:
  • https://www.mathnet.ru/eng/mmo609
  • https://www.mathnet.ru/eng/mmo/v79/i1/p97
  • This publication is cited in the following 8 articles:
    1. Sergey A. Kashchenko, “Asymptotics of Self-Oscillations in Chains of Systems of Nonlinear Equations”, Regul. Chaotic Dyn., 29:1 (2024), 218–240  mathnet  crossref
    2. E. P. Kubyshkin, “Averaging Method in the Problem of Constructing Self-Oscillatory Solutions of Distributed Kinetic Systems”, Comput. Math. and Math. Phys., 64:12 (2024), 2868  crossref
    3. S. A. Kaschenko, “Dynamics of the chain of logistic equations with delay and antidiffusive linkage”, Dokl. Math., 105:1 (2022), 18–22  mathnet  crossref  crossref  elib
    4. S. A. Kaschenko, “Dynamics of Spatially Distributed Chains of Coupled Systems of Equations in a Two-Dimensional Domain”, Math. Notes, 110:5 (2021), 709–717  mathnet  crossref  crossref  isi  elib
    5. S. A. Kashchenko, “Local dynamics of a chain of coupled Van der Pol equations”, Radiophys. Quantum Electron., 63:9-10 (2021), 776–785  crossref  isi  scopus
    6. S. A. Kaschenko, “Corporate dynamics in chains of coupled logistic equations with delay”, Comput. Math. Math. Phys., 61:7 (2021), 1063–1074  mathnet  mathnet  crossref  crossref  isi  scopus
    7. S. A. Kaschenko, “Local Dynamics of Chains of Van der Pol Coupled Systems”, Math. Notes, 108:6 (2020), 901–905  mathnet  crossref  crossref  mathscinet  isi  elib
    8. S. A. Kaschenko, “Bifurcations in spatially distributed chains of two-dimensional systems of equations”, Russian Math. Surveys, 75:6 (2020), 1153–1155  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Moskovskogo Matematicheskogo Obshchestva
    Statistics & downloads:
    Abstract page:257
    Full-text PDF :70
    References:45
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025