Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2020, Volume 203, Number 1, Pages 40–55
DOI: https://doi.org/10.4213/tmf9795
(Mi tmf9795)
 

This article is cited in 3 scientific papers (total in 3 papers)

Asymptotic behavior of rapidly oscillating solutions of the modified Camassa–Holm equation

S. A. Kashchenko

Demidov Yaroslavl State University, Yaroslavl, Russia
Full-text PDF (448 kB) Citations (3)
References:
Abstract: We consider the modernized Camassa–Holm equation with periodic boundary conditions. The quadratic nonlinearities in this equation differ substantially from the nonlinearities in the classical Camassa–Holm equation but have all its main properties in a certain sense. We study the so-called nonregular solutions, i.e., those that are rapidly oscillating in the spatial variable. We investigate the problem of constructing solutions asymptotically periodic in time and more complicated solutions whose leading terms of the asymptotic expansion are multifrequency. We study the problem of the possibility of a compact form of these asymptotic expansions and the problem of reducing the construction of the leading terms of the asymptotic expansions to the analysis of the solutions of special nonlinear boundary-value problems. We show that this is possible only for the classical Camassa–Holm equation.
Keywords: boundary-value problem, asymptotic expansion, bifurcation, regular solution, nonregular solution.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 1.13560.2019/13.1
This research was performed in the framework of a project of a Regional Scientific-Educational Mathematics Center (1.13560.2019/13.1) of the Ministry of Science and Higher Education.
Received: 26.08.2019
Revised: 28.11.2019
English version:
Theoretical and Mathematical Physics, 2020, Volume 203, Issue 1, Pages 469–482
DOI: https://doi.org/10.1134/S0040577920040042
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: S. A. Kashchenko, “Asymptotic behavior of rapidly oscillating solutions of the modified Camassa–Holm equation”, TMF, 203:1 (2020), 40–55; Theoret. and Math. Phys., 203:1 (2020), 469–482
Citation in format AMSBIB
\Bibitem{Kas20}
\by S.~A.~Kashchenko
\paper Asymptotic behavior of rapidly oscillating solutions of the~modified
Camassa--Holm equation
\jour TMF
\yr 2020
\vol 203
\issue 1
\pages 40--55
\mathnet{http://mi.mathnet.ru/tmf9795}
\crossref{https://doi.org/10.4213/tmf9795}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020TMP...203..469K}
\elib{https://elibrary.ru/item.asp?id=43272493}
\transl
\jour Theoret. and Math. Phys.
\yr 2020
\vol 203
\issue 1
\pages 469--482
\crossref{https://doi.org/10.1134/S0040577920040042}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000529685500004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85084149170}
Linking options:
  • https://www.mathnet.ru/eng/tmf9795
  • https://doi.org/10.4213/tmf9795
  • https://www.mathnet.ru/eng/tmf/v203/i1/p40
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:284
    Full-text PDF :27
    References:52
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024