Modelirovanie i Analiz Informatsionnykh Sistem
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Model. Anal. Inform. Sist.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Modelirovanie i Analiz Informatsionnykh Sistem, 2015, Volume 22, Number 5, Pages 609–628
DOI: https://doi.org/10.18255/1818-1015-2015-5-609-628
(Mi mais463)
 

This article is cited in 2 scientific papers (total in 2 papers)

Dynamical properties of the Fisher–Kolmogorov–Petrovskii–Piscounov equation with deviation of the spatial variable

S. V. Aleshinab, S. D. Glyzinab, S. A. Kaschenkoac

a P.G. Demidov Yaroslavl State University, Sovetskaya str., 14, Yaroslavl, 150000, Russia
b Scientific Center in Chernogolovka RAS, Lesnaya str., 9, Chernogolovka, Moscow region, 142432, Russia
c National Research Nuclear University MEPhI, Kashirskoye shosse 31, Moscow, 115409, Russia
References:
Abstract: We consider the problem of density wave propagation of a logistic equation with deviation of the spatial variable and diffusion (Fisher–Kolmogorov equation with deviation of the spatial variable). A Ginzburg–Landau equation was constructed in order to study the qualitative behavior of the solution near the equilibrium state. We analyzed the profile of the wave equation and found conditions for the appearance of oscillatory regimes. The numerical analysis of wave propagation shows that for a suficiently small spatial deviation this equation has a solution similar to the solution of the classical Fisher–Kolmogorov equation. The spatial deviation increasing leads to the existence of the oscillatory component in the spatial distribution of solutions. A further increase of the spatial deviation leads to destruction of the traveling wave. That is expressed in the fact that undamped spatio-temporal fluctuations exist in a neighborhood of the initial perturbation. These fluctuations are close to the solution of the corresponding boundary value problem with periodic boundary conditions. Finally, when the spatial deviation is suficiently large we observe intensive spatio-temporal fluctuations in the whole area of wave propagation.
Keywords: attractor, bifurcation, Fisher-Kolmogorov equation, Ginzburg–Landau equation.
Funding agency Grant number
Russian Science Foundation 14-21-00158
This work was supported by the Russian Foundation for Basic Research №14-21-00158.
Received: 10.08.2015
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: S. V. Aleshin, S. D. Glyzin, S. A. Kaschenko, “Dynamical properties of the Fisher–Kolmogorov–Petrovskii–Piscounov equation with deviation of the spatial variable”, Model. Anal. Inform. Sist., 22:5 (2015), 609–628
Citation in format AMSBIB
\Bibitem{AleGlyKas15}
\by S.~V.~Aleshin, S.~D.~Glyzin, S.~A.~Kaschenko
\paper Dynamical properties of the Fisher--Kolmogorov--Petrovskii--Piscounov equation with deviation of the spatial variable
\jour Model. Anal. Inform. Sist.
\yr 2015
\vol 22
\issue 5
\pages 609--628
\mathnet{http://mi.mathnet.ru/mais463}
\crossref{https://doi.org/10.18255/1818-1015-2015-5-609-628}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3499141}
\elib{https://elibrary.ru/item.asp?id=25063574}
Linking options:
  • https://www.mathnet.ru/eng/mais463
  • https://www.mathnet.ru/eng/mais/v22/i5/p609
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Моделирование и анализ информационных систем
    Statistics & downloads:
    Abstract page:292
    Full-text PDF :128
    References:60
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024